J. Mater. Sci. Technol. ›› 2021, Vol. 86: 210-218.DOI: 10.1016/j.jmst.2021.01.030
• Research Article • Previous Articles Next Articles
Hua-Wei Zhanga, Yi-Xin Lua, Bo Lib, Gui-Fang Huanga,*(), Fan Zenga, Yuan-Yuan Lia, Anlian Panb, Yi-Feng Chaic, Wei-Qing Huanga,*(
)
Received:
2020-09-16
Accepted:
2021-01-16
Published:
2021-09-30
Online:
2021-09-24
Contact:
Gui-Fang Huang,Wei-Qing Huang
About author:
wqhuang@hnu.edu.cn (W.-Q. Huang).Hua-Wei Zhang, Yi-Xin Lu, Bo Li, Gui-Fang Huang, Fan Zeng, Yuan-Yuan Li, Anlian Pan, Yi-Feng Chai, Wei-Qing Huang. Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation[J]. J. Mater. Sci. Technol., 2021, 86: 210-218.
Fig. 1. Illustration of the preparation procedure for supramolecular organic assemblies. The melamine solution without sulfuric acid will crystallize out perfect melamine crystals during cooling. The addition of sulfuric acid will hydrolyze part of the melamine molecules into cyanuric acid molecules, which are driven by multiple hydrogen bonds (green dotted lines) and counterion bridging (light blue solid lines) to assemble into MCA supramolecular organic assemblies with surrounding melamine molecules. When the amount of sulfuric acid added is less than 1 g, residual free melamine molecules remained in the solution will adsorb on the surface of the supramolecular organic assemblies and crystallize to form a “shell” during the cooling process. As the amount of sulfuric acid added is 1 g, the molar ratio of unhydrolyzed melamine to cyanuric acid and sulfate ions is cloes to 1:1, leading to the formation of rhombohedra MCA supramolecular assemblies. Further increasing the sulfuric acid added, melamine-cyanuric acid supramolecular complexes with an elongated rhombohedral structure will appear owing to the strong directional component of the interactions such as hydrogen bonds and counterion bridging.
Fig. 2. (a) The evolution process and conjectural mechanism of M-0.5 complex in the process of heating. The topological morphology of S-CN/CN homojunction can be easily adjusted from hollow cocoon to hierarchical architecture composed of 2D nanosheets only by changing the annealing conditions. (b) The XRD patterns and (c) the FTIR spectrum of the supramolecular precursor. (d) The XRD patterns and (e) the FTIR spectrum of MCN, RCN, CNS-0.25, CNS-0.5, CNS-1, and CNS-0.5 N.
Fig. 3. Acid-induced topological morphology modulation of graphitic carbon nitride junctions. The SEM images of (a) MCN, (b) RCN, (c) CNS-0.25, (d) CNS-0.5, (e) CNS-1, and (f) CNS-0.5 N with topological morphology. (g) EDS elemental mapping of CNS-0.5N.
Fig. 4. (a) UV/Vis light absorption spectra and plots of (αhν)2 versus energy (hν)2 for bandgap energy analysis, (b) Schematic band structures, (c) EIS Nyquist plots, (d) transient photocurrent response, (e) linear sweep voltammetry curves, and (f) Tafel plots of MCN, RCN, and CNS, respectively.
Fig. 5. (a) Photocatalytic activities and (b) apparent rate constants on the degradation of RhB. (c) Cycling runs for the photocatalytic degradation of RhB in the presence of CNS-0.5N under visible light irradiation. (d) The photocatalytic performance of CNS-0.5N in the presence of various quenchers.
[1] |
J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng, X. Wang, Z.J. Xu, Chem. Soc. Rev. 49(2020) 2196-2214.
DOI URL |
[2] |
K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy 73 (2020), 104761.
DOI URL |
[3] |
H. Xu, H. Shang, C. Wang, Y. Du, Coord. Chem. Rev. 418(2020), 213374.
DOI URL |
[4] |
Y. Wu, C. Li, W. Liu, H. Li, Y. Gong, L. Niu, X. Liu, C. Sun, S. Xu, Nanoscale 11 (2019) 5064-5071.
DOI URL |
[5] |
Z.P. Wu, X.F. Lu, S.Q. Zang, X.W. Lou, Adv. Funct. Mater. 30(2020), 1910274.
DOI URL |
[6] |
W. Liu, H. Zhang, C. Li, X. Wang, J. Liu, X. Zhang. J. Energy Chem 47(2020) 333-345.
DOI URL |
[7] |
K. Zeng, X. Zheng, C. Li, J. Yan, J.H. Tian, C. Jin, P. Strasser, R. Yang, Adv. Funct. Mater. 30(2020), 2000503.
DOI URL |
[8] |
J. Yi, W. El-Alami, Y. Song, H. Li, P.M. Ajayan, H. Xu, Chem. Eng. J. 382(2020), 122812.
DOI URL |
[9] |
X. Wu, D. Gao, H. Yu, J. Yu, Nanoscale 11 (2019) 9608-9616.
DOI URL |
[10] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci 56(2020) 1-17.
DOI URL |
[11] |
Q. Liu, J. Shen, X. Yu, X. Yang, W. Liu, J. Yang, H. Tang, H. Xu, H. Li, Y. Li, J. Xu, Appl. Catal. B 248 (2019) 84-94.
DOI URL |
[12] | M.G. Kim, W.K. Jo, J. Mater. Sci 40(2020) 168-175. |
[13] | V. Balakumar, H. Kim, J.W. Ryu, R. Manivannan, Y.A. Son, J. Mater. Sci 40(2020) 176-184. |
[14] | W. Zhang, Q. Yao, G. Jiang, C. Li, Y. Fu, X. Wang, A. Yu, Z. Chen, ACS Catal. 9(2019) 1603-11613. |
[15] |
Y. Zheng, Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, X. Tang, Y. Zhang, Y. Zhao, J. Mater. Sci 41(2020) 117-126.
DOI URL |
[16] |
Y. Li, F. Gong, Q. Zhou, X. Feng, J. Fan, Q. Xiang, Appl. Catal. B 268 (2020), 118381.
DOI URL |
[17] |
S.N. Talapaneni, G. Singh, I.Y. Kim, K. AlBahily, A.H. Al-Muhtaseb, A.S. Karakoti, E. Tavakkoli, A. Vinu, Adv. Mater. 32(2020), 1904635.
DOI URL |
[18] | Q. Yan, G.F. Huang, D.F. Li, M. Zhang, A.L. Pan, W.Q. Huang, J. Mater. Sci 34(2018) 2515-2520. |
[19] |
T. Cea, N.R. Walet, F. Guinea, Nano Lett. 19(2019) 8683-8689.
DOI URL |
[20] |
I. Cucchi, A. Marrazzo, E. Cappelli, S. Ricco, F.Y. Bruno, S. Lisi, M. Hoesch, T.K. Kim, C. Cacho, C. Besnard, E. Giannini, N. Marzari, M. Gibertini, F. Baumberger, A. Tamai, Phys. Rev. Lett. 124(2020), 106402.
DOI PMID |
[21] | J. Xu, Z. Wang, Y. Zhu, J. Mater. Sci 49(2020) 133-143. |
[22] |
R. Kamarudheen, G. Kumari, A. Baldi, Nat. Commun. 11(2020), 3957-3957.
DOI PMID |
[23] |
Y. Lei, Y. Chen, R. Zhang, Y. Li, Q. Yan, S. Lee, Y. Yu, H. Tsai, W. Choi, K. Wang, Y. Luo, Y. Gu, X. Zheng, C. Wang, C. Wang, H. Hu, Y. Li, B. Qi, M. Lin, Z. Zhang, S.A. Dayeh, M. Pharr, D.P. Fenning, Y.H. Lo, J. Luo, K. Yang, J. Yoo, W. Nie, S. Xu, Nature 583 (2020) 790-795.
DOI URL |
[24] |
Z. Jiang, J.W. Strzalka, D.A. Walko, J. Wang, Nat. Commun. 11(2020) 3197.
DOI URL |
[25] |
X. Liu, Z. Hao, E. Khalaf, J.Y. Lee, Y. Ronen, H. Yoo, D.H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim, Nature 583 (2020) 221-225.
DOI URL |
[26] |
H. Xiong, H. Zhou, G. Sun, Z. Liu, L. Zhang, L. Zhang, F. Du, Z.-A. Qiao, S. Dai, Angew. Chem. Int. Ed. 59(2020) 11053-11060.
DOI URL |
[27] |
H. He, J.-E. Ostwaldt, C. Hirschhaeuser, C. Schmuck, J. Niemeyer, Small 16 (2020), 2001044.
DOI URL |
[28] |
A. Ibanez-Fonseca, D. Orbanic, F.J. Arias, M. Alonso, D.I. Zeugolis, J.C. Rodriguez-Cabello, Small 16 (2020), 2001244.
DOI URL |
[29] |
J. Huang, H. Ren, R. Zhang, L. Wu, Y. Zhai, Q. Meng, J. Wang, Z. Su, R. Zhang, S. Dai, S.Z.D. Cheng, M. Huang, ACS Nano 14 (2020) 8266-8275.
DOI URL |
[30] |
Y. Liu, J. Li, L. Kan, J. Li, M. Eddaoudi, Angew. Chem. Int. Ed. 59(2020) 19659-19662.
DOI URL |
[31] |
S. Sun, S. Liang, Nanoscale 9 (2017) 10544-10578.
DOI URL |
[32] |
N. Tian, H. Huang, X. Du, F. Dong, Y. Zhang, J. Mater. Chem. A Mater. Energy Sustain. 7(2019) 11584-11612.
DOI URL |
[33] |
Q. Cao, B. Kumru, M. Antonietti, B.V.K.J. Schmidt, Mater. Horiz. 7(2020) 762-786.
DOI URL |
[34] |
J. Xu, G. Wu, Z. Wang, X. Zhang, Chem. Sci. 3(2012) 3227-3230.
DOI URL |
[35] |
Y.S. Jun, J. Park, S.U. Lee, A. Thomas, W.H. Hong, G.D. Stucky, Angew. Chem. Int. Ed. 52(2013) 11083-11087.
DOI URL |
[36] |
B.X. Zhou, S.S. Ding, W. Wang, X.R. Wang, W.Q. Huang, K. Li, G.F. Huang, Nanoscale 12 (2020) 6037-6046.
DOI URL |
[37] |
Y. Ishida, L. Chabanne, M. Antonietti, M. Shalom, Langmuir 30 (2014) 447-451.
DOI PMID |
[38] |
H.L. Li, F.P. Li, Z.Y. Wang, Y.C. Jiao, Y.Y. Liu, P. Wang, X.Y. Zhang, X.Y. Qin, Y. Dai, B.B. Huang, Appl. Catal. B 229 (2018) 114-120.
DOI URL |
[39] |
S. Dolai, J. Barrio, G. Peng, A. Grafmueller, M. Shalom, Nanoscale 11 (2019) 5564-5570.
DOI URL |
[40] |
H. Wang, Y. Bian, J. Hu, L. Dai, Appl. Catal. B 238 (2018) 592-598.
DOI URL |
[41] | K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal. B 176 (2015) 44-52. |
[42] |
M. Shalom, M. Guttentag, C. Fettkenhauer, S. Inal, D. Neher, A. Llobet, M. Antonietti, Chem. Mater. 26(2014) 5812-5818.
DOI URL |
[43] |
Q. Liang, Z. Li, Y. Bai, Z.H. Huang, F. Kang, Q.H. Yang, Small 13 (2017), 1603182.
DOI URL |
[44] |
Q. Qiao, W.Q. Huang, Y.Y. Li, B. Li, W. Hu, W. Peng, X. Fan, G.F. Huang, J. Mater. Sci. 53(2018) 15882-15894.
DOI URL |
[45] |
Y.Y. Li, Y. Si, E.X. Han, W.Q. Huang, W.Y. Hu, A.L. Pan, G.F. Huang, J. Phys, D-Appl. Phys. 53(2020), 015502.
DOI URL |
[46] | Y. Li, X. Li, H. Zhang, J. Fan, Q. Xiang, J. Mater. Sci 56(2020) 69-88. |
[47] |
J. Cao, C. Pan, Y. Ding, W. Li, K. Lv, H. Tang. J. Environ. Chem. Eng. 7(2019), 102984.
DOI URL |
[48] |
X. Song, X. Li, X. Zhang, Y. Wu, C. Ma, P. Huo, Y. Yan, Appl. Catal. B 268 (2020), 118736.
DOI URL |
[49] |
F.M. Wu, N. Wang, S.F. Pang, Y.H. Zhang, Spectrochim. Acta Part A 208 (2019) 255-261.
DOI URL |
[50] |
S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55(2016) 1830-1834.
DOI URL |
[51] |
L. Jiang, X. Yuan, G. Zeng, X. Chen, Z. Wu, J. Liang, J. Zhang, H. Wang, H. Wang, ACS Sustainable Chem. Eng. 5(2017) 5831-5841.
DOI URL |
[52] | Y. Li, S. Wang, W. Chang, L. Zhang, Z. Wu, S. Song, Y. Xing, J. Mater. Chem 7(2019) 20640-20648. |
[53] |
S. Zhao, Y.W. Zhang, Y.M. Zhou, Y.Y. Wang, K.B. Qiu, C. Zhang, J.S. Fang, X.L. Sheng, Carbon 126 (2018) 247-256.
DOI URL |
[54] |
Z. Tong, D. Yang, X. Zhao, J. Shi, F. Ding, X. Zou, Z. Jiang, Chem. Eng. J. 337(2018) 312-321.
DOI URL |
[55] |
W. Wang, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, C. Zhou, W. Xiong, Y. Yang, L. Lei, Y. Liu, D. Huang, M. Cheng, Y. Yang, Y. Fu, H. Luo, Y. Zhou, Chem. Eng. J. 378(2019), 122132.
DOI URL |
[56] |
F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.K. Ho, ACS Appl. Mater. Interfaces 5 (2013) 11392-11401.
DOI URL |
[57] |
X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 59 (2019) 644-650.
DOI URL |
[58] |
B. Li, Y. Si, B.X. Zhou, Q. Fang, Y.Y. Li, W.Q. Huang, W. Hu, A. Pan, X. Fan, G.F. Huang, ACS Appl. Mater. Interfaces 11 (2019) 17341-17349.
DOI URL |
[59] | E.X. Han, Y.Y. Li, Q.H. Wang, W.Q. Huang, L. Luo, W. Hu, G.F. Huang, J. Mater. Sci 35(2019) 2288-2296. |
[60] |
H.W. Zhang, Y.Y. Li, W.Q. Huang, B.X. Zhou, S.F. Ma, Y.X. Lu, A.L. Pan, G.F. Huang, Carbon 148 (2019) 231-240.
DOI |
[61] |
Y. Cui, M. Li, H. Wang, C. Yang, S. Meng, F. Chen, Sep. Purif. Technol. 199(2018) 251-259.
DOI URL |
[62] | L. Luo, H.W. Zhang, E.X. Han, B.X. Zhou, W.Q. Huang, W. Hu, G.F. Huang, J. Chem. Technol 95(2019) 758-769. |
[63] |
T. Ma, J. Bai, Q. Wang, C. Li, Dalton Trans. 47(2018) 10240-10248.
DOI URL |
[64] |
W.D. Oh, L.W. Lok, A. Veksha, A. Giannis, T.T. Lim, Chem. Eng. J. 333(2018) 739-749.
DOI URL |
[65] |
Y.Y. Li, B.X. Zhou, H.W. Zhang, S.F. Ma, W.Q. Huang, W. Peng, W. Hu, G.F. Huang, Nanoscale 11 (2019) 6876-6885.
DOI URL |
[66] |
Y. Tang, H. Zhou, K. Zhang, J. Ding, T. Fan, D. Zhang, Chem. Eng. J. 262(2015) 260-267.
DOI URL |
[1] | Kaisheng Ming, Shuimiao Jiang, Xiaoyuan Niu, Bo Li, Xiaofang Bi, Shijian Zheng. High-temperature strength-coercivity balance in a FeCo-based soft magnetic alloy via magnetic nanoprecipitates [J]. J. Mater. Sci. Technol., 2021, 81(0): 36-42. |
[2] | Yuyang Tang, Yuqing Li, Xiaochang Xu, Ming Yue, Weiqiang Liu, Hongguo Zhang, Qingmei Lu, Weixing Xia. Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution [J]. J. Mater. Sci. Technol., 2021, 80(0): 28-35. |
[3] | Jiajie Li, Xiangyun Huang, Liangliang Zeng, Bo Ouyang, Xiaoqiang Yu, Munan Yang, Bin Yang, Rawat Rajdeep Singh, Zhenchen Zhong. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films [J]. J. Mater. Sci. Technol., 2020, 41(0): 81-87. |
[4] | Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state [J]. J. Mater. Sci. Technol., 2020, 37(0): 181-184. |
[5] | Xiaodan Chi, Yong Hu. Role of competing interactions on dynamic relaxation and exchange bias in spin-glass/ferromagnet bilayer [J]. J. Mater. Sci. Technol., 2020, 51(0): 63-69. |
[6] | H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process [J]. J. Mater. Sci. Technol., 2020, 36(0): 50-54. |
[7] | Shan Jiang, Hao Shao, Genyang Cao, Han Li, Weilin Xu, Jingliang Li, Jian Fang, Xungai Wang. Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution [J]. J. Mater. Sci. Technol., 2020, 59(0): 92-99. |
[8] | J.S. Zhang, W. Li, X.F. Liao, H.Y. Yu, L.Z. Zhao, H.X. Zeng, D.R. Peng, Z.W. Liu. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 1877-1885. |
[9] | Xiaohan Li, Biaohong Huang, Weijin Hu, Zhidong Zhang. Electrical and optical modulation on ferroelectric properties of P(VDF-TrFE) thin film capacitors [J]. J. Mater. Sci. Technol., 2019, 35(10): 2194-2199. |
[10] | Feng J.N.,Liu W.,Gong W.J.,Zhao X.G.,Kim D.,Choi C.J.,Zhang Z.D.. Magnetic Properties and Coercivity of MnGa Films Deposited on Different Substrates [J]. J. Mater. Sci. Technol., 2017, 33(3): 291-294. |
[11] | Jiang Qingzheng, Zhong Zhenchen. Research and development of Ce-containing Nd2Fe14B-type alloys and permanent magnetic materials [J]. J. Mater. Sci. Technol., 2017, 33(10): 1087-1096. |
[12] | C. Sun, W.Q. Liu, H. Sun, M. Yue, X.F. Yi, J.W. Chen. Improvement of Coercivity and Corrosion Resistance of Nd–Fe–B Sintered Magnets with Cu Nano-particles Doping [J]. J. Mater. Sci. Technol., 2012, 28(10): 927-930. |
[13] | C.Y. You, J. Zhu, N. Tian, Z.X. Lu. Coercivity Enhancement of Nd{Fe{B Thin Film Magnets through Dy Surface Diffusion Process [J]. J Mater Sci Technol, 2011, 27(9): 826-830. |
[14] | Dan LI, Yousong GU, Xiangrong CHANG, Fushen LI, Lijie QIAO, Zhongzhuo TIAN. Reduction of Coercivity of Fe-N Soft Magnetic Film by Heat Treatment [J]. J Mater Sci Technol, 2003, 19(05): 491-494. |
[15] | HUANG Gangxiang XU Qingzhen GAO Huimin YU Shanfu HUA Hongci WANG Geya Shanghai Iron and Steel Research Institute,Shanghai,200940,China.Shanghai Institute of Metallurgy,Academia Sinica,Shanghai,200050,China.. Coercivity Mechanism of Melt-spun Nd-Fe-B Bonded Magnet [J]. J Mater Sci Technol, 1990, 6(4): 272-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||