J. Mater. Sci. Technol. ›› 2021, Vol. 83: 7-17.DOI: 10.1016/j.jmst.2020.10.087
• Research Article • Previous Articles Next Articles
Tao Hua,1, Jingjing Suna,1, Yifu Zhanga,*(), Yanyan Liua, Hanmei Jianga, Xueying Donga, Jiqi Zhenga, Changgong Menga, Chi Huangb,*(
)
Received:
2020-07-05
Revised:
2020-10-12
Accepted:
2020-10-19
Published:
2021-08-30
Online:
2021-01-29
Contact:
Yifu Zhang,Chi Huang
About author:
chihuang@whu.edu.cn (C. Huang).1 These authors equally contributed to this work.
Tao Hu, Jingjing Sun, Yifu Zhang, Yanyan Liu, Hanmei Jiang, Xueying Dong, Jiqi Zheng, Changgong Meng, Chi Huang. PVA-assisted hydrated vanadium pentoxide/reduced graphene oxide films for excellent Li+ and Zn2+ storage properties[J]. J. Mater. Sci. Technol., 2021, 83: 7-17.
Scheme 1. Schematic illustration of the preparation of the binder-free VGP film: (a) the synthetic route; (b) structure of V2O5∙nH2O; (c) FE-SEM images of the VGP films.
Fig. 1. Characterizations of the VGP: (a, b) XRD patterns of the VGP0, VGP2, VGP3, VGP4, VGP5, and VGP6; (c) TGA curves and (d) Raman spectra of the VGP0 and VGP4.
Fig. 5. Electrochemical properties of the VGP as Li-ion SC electrode in the three-electrode system: (a) Comparison of CV curves at 20 mV s-1; (b) Comparison of GCD curves at 1 A g-1; (c) Specific capacitances at 1 A g-1; (d) Specific capacitances at different current densities; (e) Cyclic performance of VGP4; (f) Nyquist plots of VGP0 and VGP4 obtained over the frequency range of 100 kHz to 0.01 Hz.
Fig. 6. Electrochemical properties of VGP as Li-ion SC device in the two-electrode system: (a) The comparison of CV curves at 20 mV s-1; (b) GCD curves at 1 A g-1; (c) and the corresponding specific capacitances at 1 A g-1; (d) specific capacitances at different current densities.
Fig. 7. (a) Nyquist plots of VGP0 and VGP4 over the frequency range of 100 kHz to 0.01 Hz; (b) Cycling performance of VGP4; (c) Ragone plots (power density to energy density); (d) Ragone plots of VGP4 comparing with the reported materials in literatures (detail data in Table S2).
Fig. 8. Electrochemical performance of VGP as the VGP//ZnSO4 (aq)//Zn device: (a) schematic of the VGP//ZnSO4 (aq)//Zn energy storage system; (b) CV curves and (c) GCD curves of VGP4; Comparison of (d) CV curves and (e) GCD curves of VGP0 and VGP4; (f) cycling performance of VGP4.
[1] | P. Yu, Y. Zeng, H. Zhang, M. Yu, Y. Tong, X. Lu, Small 15 (2019), 1804760. |
[2] |
Y. Li, Y. Xia, K. Liu, K. Ye, Q. Wang, S. Zhang, Y. Huang, H. Liu, ACS Appl. Mater. Interfaces 12 (2020) 25494-25502.
DOI URL |
[3] |
Y. Zhang, H. Jiang, Q. Wang, C. Meng, Chem. Eng. J. 352 (2018) 519-529.
DOI URL |
[4] |
S. Tan, Y. Jiang, Q. Wei, Q. Huang, Y. Dai, F. Xiong, Q. Li, Q. An, X. Xu, Z. Zhu, X. Bai, L. Mai, Adv. Mater. 30 (2018), 1707122.
DOI URL |
[5] |
M. Li, J. Meng, Q. Li, M. Huang, X. Liu, K.A. Owusu, Z. Liu, L. Mai, Adv. Funct. Mater. 28 (2018), 1802016.
DOI URL |
[6] |
K. Li, X. Lu, Y. Zhang, K. Liu, Y. Huang, H. Liu, Environ. Res. 185 (2020), 109409.
DOI URL |
[7] |
Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, Y. Tong, J. Mater. Chem. A 6 (2018) 24740-24747.
DOI URL |
[8] |
Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan, B. Dunn, L. Mai, Adv. Mater. 29 (2017), 1602300.
DOI URL |
[9] |
Q. Wang, Y. Zhang, H. Jiang, T. Hu, C. Meng, ACS Appl. Energy Mater. 1 (2018) 3396-3409.
DOI URL |
[10] |
R. Demir-Cakan, M.R. Palacín, L. Croguennec, J. Mater. Chem. A 7 (2019) 20519-20539.
DOI |
[11] |
T. Wu, K. Zhu, C. Qin, K. Huang, J. Mater. Chem. A 7 (2019) 5612-5620.
DOI URL |
[12] |
H. Liu, H. Yu, J. Mater. Sci. Technol. 35 (2019) 674-686.
DOI URL |
[13] |
P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang, F. Zhu, X. Zhuang, O.G. Schmidt, X. Feng, Adv. Mater. 31 (2019), 1806005.
DOI URL |
[14] | J. Xie, Q. Zhang, Small 15 (2019), 1805061. |
[15] |
Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Chem. Eng. J. 362 (2019) 818-829.
DOI URL |
[16] |
Q. Wang, Y. Zhang, H. Jiang, C. Meng, J. Colloid Interface Sci. 534 (2019) 142-155.
DOI URL |
[17] | Y. Huang, H. Yang, T. Xiong, D. Adekoya, W. Qiu, Z. Wang, S. Zhang, M.S. Balogun, Energy Storage Mater. 25 (2020) 41-51. |
[18] |
J. Wu, X. Gao, H. Yu, T. Ding, Y. Yan, B. Yao, X. Yao, D. Chen, M. Liu, L. Huang, Adv. Funct. Mater. 26 (2016) 6114-6120.
DOI URL |
[19] |
Y. Hong, J. Xu, J.S. Chung, W.M. Choi, J. Mater. Sci. Technol. 58 (2020) 73-79.
DOI URL |
[20] |
J. Ma, S. Tang, J.A. Syed, D. Su, X. Meng, J. Mater. Sci. Technol. 34 (2018) 1103-1109.
DOI URL |
[21] |
G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 3 (2018) 2480-2501.
DOI URL |
[22] |
T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy 50 (2018) 462-467.
DOI URL |
[23] |
C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Nat. Commun. 6 (2015) 6929.
DOI URL |
[24] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abru ˜na, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518.
DOI URL |
[25] |
F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, ACS Energy Lett. 3 (2018) 2602-2609.
DOI URL |
[26] |
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, Adv. Mater. 30 (2018), 1703725.
DOI URL |
[27] |
Y. Zhang, M. Chen, T. Hu, C. Meng, ACS Appl. Nano Mater. 2 (2019) 2934-2945.
DOI |
[28] |
J. Zheng, Y. Zhang, C. Meng, X. Wang, C. Liu, M. Bo, X. Pei, Y. Wei, T. Lv, G. Cao, Electrochim. Acta 318 (2019) 635-643.
DOI |
[29] |
Y. Zhang, X. Jing, Y. Cheng, T. Hu, C. Meng, Inorg. Chem. Front. 5 (2018) 2798-2810.
DOI URL |
[30] |
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang, M. Yan, M. Tian, M. Wang, J. Yang, G. Cao, Energy Environ. Sci. 12 (2019) 2273-2285.
DOI URL |
[31] |
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. Liang, Energy Environ. Sci. 11 (2018) 3157-3162.
DOI URL |
[32] |
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, Nat. Energy 1 (2016) 16119.
DOI URL |
[33] |
Y. Zhang, H. Jiang, L. Xu, Z. Gao, C. Meng, ACS Appl. Energy Mater. 2 (2019) 7861-7869.
DOI |
[34] |
H. Jiang, Y. Zhang, L. Xu, Z. Gao, J. Zheng, Q. Wang, C. Meng, J. Wang, Chem. Eng. J. 382 (2020), 122844.
DOI URL |
[35] | H. Jiang, Y. Zhang, Z. Pan, L. Xu, J. Zheng, Z. Gao, T. Hu, C. Meng, Electrochim. Acta 332 (2020), 135506. |
[36] |
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Angew. Chem. Int. Ed. 57 (2018) 3943-3948.
DOI URL |
[37] |
F. Wang, E. Hu, W. Sun, T. Gao, X. Ji, X. Fan, F. Han, X.-Q. Yang, K. Xu, C. Wang, Energy Environ. Sci. 11 (2018) 3168-3175.
DOI URL |
[38] |
V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro, J. Jo, S. Kim, V. Mathew, Y.-K. Sun, J. Kim, Nano Lett. 18 (2018) 2402-2410.
DOI PMID |
[39] |
P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Adv. Energy Mater. 8 (2018), 1702463.
DOI URL |
[40] | H. Hosseini, S. Shahrokhian, Appl. Mater. Today 10 (2018) 72-85. |
[41] |
A.K. Geim, Science 324 (2009) 1530-1534.
DOI PMID |
[42] |
T. Hu, Y. Liu, Y. Zhang, M. Chen, J. Zheng, J. Tang, C. Meng, J. Colloid Interface Sci. 531 (2018) 382-393.
DOI URL |
[43] | Y. Cheng, Y. Zhang, H. Jiang, X. Dong, C. Meng, Z. Kou, J. Power Sources 448 (2020), 227407. |
[44] |
O.C. Compton, S.W. Cranford, K.W. Putz, Z. An, L.C. Brinson, M.J. Buehler, S.T. Nguyen, ACS Nano 6 (2012) 2008-2019.
DOI PMID |
[45] |
Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, K. Liao, Adv. Mater. 24 (2012) 3426-3431.
DOI URL |
[46] |
D.H. Nagaraju, Q. Wang, P. Beaujuge, H.N. Alshareef, J. Mater. Chem. A 2 (2014) 17146-17152.
DOI URL |
[47] |
H. Liu, W. Yang, Energ. Environ. Sci. 4 (2011) 4000-4008.
DOI URL |
[48] |
J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 19 (2009) 2297-2302.
DOI URL |
[49] |
Y. Zhang, X. Liu, G. Xie, L. Yu, S. Yi, M. Hu, C. Huang, Mater. Sci. Eng. B 175 (2010) 164-171.
DOI URL |
[50] |
J. Zheng, Y. Zhang, T. Hu, T. Lv, C. Meng, Cryst. Growth Des. 18 (2018) 5365-5376.
DOI URL |
[51] |
H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano Lett. 11 (2011) 2472-2477.
DOI URL |
[52] | T.M.G. Mohiuddin, R.R. Nair, R. Jalil, K.S. Novoselov, A.K. Geim, A. Bonetti, G. Savini, A.C. Ferrari, N. Bonini, N. Marzari, D.M. Basko, C. Galiotis,, Phys. Rev. B Condens. Matter Mater. Phys. 79(2009). |
[53] |
Y. Cheng, Y. Zhang, C. Meng, ACS Appl. Energy Mater. 2 (2019) 3830-3839.
DOI |
[54] |
Y. Zhang, C. Wang, H. Jiang, Q. Wang, J. Zheng, C. Meng, Chem. Eng. J. 375 (2019), 121938.
DOI URL |
[55] |
M. Chen, Y. Zhang, Y. Liu, J. Zheng, C. Meng, Appl. Surf. Sci. 492 (2019) 746-755.
DOI |
[56] |
F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, Nano-Micro Lett. 11 (2019) 25.
DOI URL |
[57] |
T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 55 (2016) 1138-1142.
DOI URL |
[58] |
L. Deng, Y. Gao, Z. Ma, G. Fan, J. Colloid Interface Sci. 505 (2017) 556-565.
DOI URL |
[59] |
X. Chen, B. Zhao, Y. Cai, M.O. Tadé, Z. Shao, Nanoscale 5 (2013) 12589-12597.
DOI PMID |
[60] |
G. Wang, X. Lu, Y. Ling, T. Zhai, H. Wang, Y. Tong, Y. Li, ACS Nano 6 (2012) 10296-10302.
DOI URL |
[61] |
J. Zheng, Y. Zhang, Q. Wang, H. Jiang, Y. Liu, T. Lv, C. Meng, Dalton Trans. 47 (2018) 452-464.
DOI PMID |
[62] |
M. Li, G. Sun, P. Yin, C. Ruan, K. Ai, ACS Appl. Mater. Interfaces 5 (2013) 11462-11470.
DOI URL |
[63] |
H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2 (2014) 1165-1173.
DOI URL |
[64] |
J. Bao, X. Zhang, L. Bai, W. Bai, M. Zhou, J. Xie, M. Guan, J. Zhou, Y. Xie, J. Mater. Chem. A 2 (2014) 10876-10881.
DOI URL |
[65] |
P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845-854.
DOI URL |
[66] | J. Zheng, Y. Zhang, X. Jing, X. Liu, T. Hu, T. Lv, S. Zhang, C. Meng, Colloid Surf. A- Physicochem. Eng.Asp. 518 (2017) 188-196. |
[67] |
K. Tang, Y. Li, Y. Li, H. Cao, Z. Zhang, Y. Zhang, J. Yang, Electrochim. Acta 209 (2016) 709-718.
DOI URL |
[68] |
M. Li, G. Sun, P. Yin, C. Ruan, K. Ai, ACS Appl. Mater. Interfaces 5 (2013) 11462-11470.
DOI URL |
[69] |
Y. Wu, G. Gao, H. Yang, W. Bi, X. Liang, Y. Zhang, G. Zhang, G. Wu, J. Mater. Chem. A 3 (2015) 15692-15699.
DOI URL |
[70] |
T. Hu, Y. Liu, Y. Zhang, Y. Nie, J. Zheng, Q. Wang, H. Jiang, C. Meng, Microporous Mesoporous Mater. 262 (2018) 199-206.
DOI URL |
[71] |
Y. Wu, G. Gao, G. Wu, J. Mater. Chem. A 3 (2015) 1828-1832.
DOI URL |
[72] |
G. Yilmaz, X. Lu, G.W. Ho, Nanoscale 9 (2017) 802-811.
DOI PMID |
[73] |
J.-H. ArupChoudhury, K.-S. Yang, D.-J. Yang, Electrochim. Acta 213 (2016) 400-407.
DOI URL |
[74] |
H. Zhou, C. Liu, J.-C. Wu, M. Liu, D. Zhang, H. Song, X. Zhang, H. Gao, J. Yang, D. Chen, J. Mater. Chem. A 7 (2019) 9708-9715.
DOI URL |
[75] | L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang, F. Kang, Energy Storage Mater. 13 (2018) 96-102. |
[76] |
B. Gao, H. Zhou, Y. Fang, B. Gu, B. Liu, L. Chen, S. Liu, J. Yang, Carbon 147 (2019) 157-163.
DOI URL |
[77] |
S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi, J.A. Zapien, J. Mater. Chem. A 7 (2019) 7784-7790.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||