J. Mater. Sci. Technol. ›› 2021, Vol. 83: 1-6.DOI: 10.1016/j.jmst.2020.12.056
• Letter • Next Articles
Yuhang Li, Xu Chenga,b,*(), Yingchun Guana,b,c,**(
)
Received:
2020-07-23
Published:
2021-01-30
Online:
2021-01-30
Contact:
Xu Cheng,Yingchun Guan
About author:
** School of Mechanical Engineering and Automation, Beihang University,Beijing, 100191, China.E-mail addresses: guanyingchun@buaa.edu.cn (Y. Guan).Yuhang Li, Xu Cheng, Yingchun Guan. Ultrafine microstructure development in laser polishing of selective laser melted Ti alloy[J]. J. Mater. Sci. Technol., 2021, 83: 1-6.
Factor | Unit | Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Laser power | W | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
Scanning velocity | mm/s | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 |
Track offset | μm | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
Table 1 Laser polishing process parameters used for experiment.
Factor | Unit | Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Laser power | W | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
Scanning velocity | mm/s | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 |
Track offset | μm | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
Fig. 1. The ANN concept for predicting surface roughness of laser polishing SLMed Ti-6Al-4V alloy: (a) topological network structure with 3-7-1 architecture; (b) algorithms for optimization of the whole process; (c) MAE of 10-fold cross validation with 2000 epochs.
Fig. 2. Surface topography and nanoindentation analysis: (a) macroscopic image; (b) SEM morphology of as-received and laser polished surface; (c) 3D topographic image in polished surface; (d) cross-sectional microstructures after laser polishing including the microstructure of HAZ (d1) and the polished layer (d2); (e) nanoindentation load-displacement curves.
Fig. 3. EBSD analysis after laser polishing: (a) inverse pole figure (IPF) map; (b) phase distribution maps corresponding to (a); (c) pole figure of α′ martensite in polished layer; (d) the average lath width in as-received layer; (e) the average lath width in polished layer; (a-1) and (b-1) is the enlarged map in (a) and (b), respectively.
Fig. 4. Typical TEM observations of the laser polished layer: (a) ultrafine martensite contained in prior β grains, the grain boundary was marked by yellow dash line, and the corresponding SAED pattern recorded from the red circle; (b) high magnification TEM image of ultrafine martensite; (c) the detailed observations on α′ martensite lath boundaries; (d) indexed SAED pattern from red circle marked in (c); (e) nanotwins within α′ martensite lath and the corresponding SAED pattern; (f) inverse fast Fourier transformed (IFFT) image of Nanotwins and the corresponding FFT pattern; (g) typical bright-field image showing the presences of twins and stacking faults (SFs) within α′ martensite laths, and the corresponding SAED pattern recorded from the red circle; (h) HRTEM morphology of interactions of SFs-dislocations; (i) the IFFT image of the SFs and the corresponding FFT pattern, (g) the atomic structure of SFs interacted with partial dislocations.
Fig. 5. Analysis of deformation resistance by compression test: (a) SEM morphology of as-received sample; (b) SEM morphology of laser polished sample; (c) compression yield strength curve.
[1] |
P. Barriobero-Vila, J. Gussone, A. Stark, N. Schell, J. Haubrich, G. Requena, Nat. Commun. 9 (2018) 3426.
DOI PMID |
[2] |
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[3] |
X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Acta Mater. 97 (2015) 1-16.
DOI URL |
[4] |
T. Deng, J. Li, Z. Zheng, Int. J. Mach. Tools Manuf. 148 (2020), 103472.
DOI URL |
[5] |
Z. Zhao, J. Chen, H. Tan, G.H. Zhang, X. Lin, W.D. Huang, Scr. Mater. 146 (2018) 187-191.
DOI URL |
[6] |
H.L. Hou, T. Ma, N.S. Johnson, S.X. Qian, C. Cissé, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, R. Radermacher, V.I. Levitas, M.J. Kramer, M.A. Zaeem, A.P. Stebner, R.T. Ott, J. Cui, I. Takeuchi, Science 366 (2019) 1116-1121.
DOI URL |
[7] |
D.C. Hofmann, S.N. Roberts, H. Kozachkov, Acta Mater. 95 (2015) 192-200.
DOI URL |
[8] |
M. Kopec, K. Wang, D.J. Politis, Y. Wang, L. Wang, J. Lin, Mater. Sci. Eng. A 719 (2018) 72-81.
DOI URL |
[9] |
R.A. Gaisin, V.M. Imayev, R.M. Imayev, J. Alloys. Compd. 723 (2017) 385-394.
DOI URL |
[10] |
B.C. Zhang, X.H. Lee, J.M. Bai, J.F. Guo, P. Wang, C.N. Sun, M.L. Nai, G.J. Qi, J. Wei, Mater. Des. 116 (2017) 531-537.
DOI URL |
[11] |
D. Bhaduri, P. Penchev, A. Batal, S. Dimov, S.L. Soo, S. Sten, U. Harrysson, Z. Zhang, H. Dong, Appl. Surf. Sci. 405 (2017) 29-46.
DOI URL |
[12] |
S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, M. Beard, Int. J. Mach. Tools Manuf. 95 (2015) 97-104.
DOI URL |
[13] |
W.J. Wang, K.C. Yung, H.S. Choy, T.Y. Xiao, Z.X. Cai, Appl. Surf. Sci. 443 (2018) 167-175.
DOI URL |
[14] |
A. Krishnan, F. Fang, Front. Mech. Eng. 14 (2019) 299-319.
DOI URL |
[15] |
K.C. Yung, T.Y. Xiao, H.S. Choy, W.J. Wang, Z.X. Cai, J. Mater. Process. Technol. 262 (2018) 53-64.
DOI URL |
[16] | Y. Tian, W.S. Gora, A.P. Cabo, L.L. Parimi, D.P. Hand, S. Tammas-Williams, P.B. Prangnell, Addit. Manuf. 20 (2018) 11-22. |
[17] |
C.P. Ma, Y.C. Guan, W. Zhou, Opt. Lasers Eng. 93 (2017) 171-177.
DOI URL |
[18] |
Y.H. Li, B. Wang, C.P. Ma, Z.H. Fang, L.F. Chen, Y.C. Guan, S.F. Yang, Metals 9 (2019) 112.
DOI URL |
[19] |
G. Hu, Y. Song, Y. Guan, Nanotechnol. Precis. Eng. 2 (2019) 29-34.
DOI URL |
[20] |
Y. Li, K. Zhou, P. Tan, S.B. Tor, C.K. Chua, K.F. Leong, Int. J. Mech. Sci. 136 (2018) 24-35.
DOI URL |
[21] | E.W.R. Christian Gobert, Jan Petrich, Abdalla R. Nassar, Shashi Phoha, Addit. Manuf. 21 (2018) 517-528. |
[22] |
X.B. Qi, Y. Li, X. Cheng, C.P. Li, Engineering 5 (2019) 721-729.
DOI URL |
[23] |
A. Temmler, D. Liu, J. Preußner, S. Oeser, J. Luo, R. Poprawe, J.H. Schleifenbaum, Mater. Des. 192 (2020), 108689.
DOI URL |
[24] | D.S. Nguyen, H.S. Park, C.M. Lee, J. Manuf. Process. 22 (2020) 230-235. |
[25] | V. K ˚urková, Neural Netw. 5 (1992) 501-506. |
[26] | Y. LeCun, Y. Bengio, G. Hinton, Nature 44 (2015) 436-444. |
[27] | J.P.B.A. Sembiring, A. Amanov, Y.S. Pyun, Mater. Today Commun. 25 (2020), 101391. |
[28] |
G.H. de Rosa, J.P. PaPa, X.S. Yang, Soft Comput. 22 (2018) 6147-6156.
DOI URL |
[29] |
W. Zhu, L. Yang, J.W. Guo, Y.C. Zhou, C. Lu, Int. J. Plast. 64 (2015) 76-87.
DOI URL |
[30] |
C. Ma, V. Madhu, N.A. Duffie, F.E. Pfefferkorn, X.C. Li, J. Manuf. Sci. Eng. 135 (2013), 061023-061021-061028.
DOI URL |
[31] |
R. Sabban, S. Bahl, K. Chatterjee, S. Suwas, Acta Mater. 162 (2019) 239-254.
DOI URL |
[32] |
C. de Formanoir, G. Martin, F. Prima, S.Y.P. Allain, T. Dessolier, F. Sun, S. Vivès, B. Hary, Y. Bréchet, S. Godet, Acta Mater. 162 (2019) 149-162.
DOI URL |
[33] |
X.J. Jiang, G.Y. Chen, X.L. Men, R.H. Han, P. Zhao, X.L. Dong, R.P. Liu, Mater. Sci. Eng. A 737 (2018) 182-187.
DOI URL |
[34] | Y. Lv, Z. Ding, J. Xue, G. Sha, E. Lu, L. Wang, W. Lu, C. Su, L.-C. Zhang, Scr.Mater. 157 (2018) 142-147. |
[35] |
B.S. Yilbas, S.S. Akhtar, C. Karatas, Opt. Lasers Eng. 48 (2010) 740-749.
DOI URL |
[36] |
E. Yasa, J.P. Kruth, J. Deckers, CIRP Ann. 60 (2011) 263-266.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||