J. Mater. Sci. Technol. ›› 2021, Vol. 82: 122-134.DOI: 10.1016/j.jmst.2020.12.017
• Research Article • Previous Articles Next Articles
Yan Maa,b(), Muxin Yanga(
), Fuping Yuana,b,*(
), Xiaolei Wua,b(
)
Received:
2020-10-15
Revised:
2020-11-17
Accepted:
2020-12-01
Published:
2021-01-29
Online:
2021-01-29
Contact:
Yan Ma,Muxin Yang,Fuping Yuan,Xiaolei Wu
About author:
xlwu@imech.ac.cn (X. Wu).Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy[J]. J. Mater. Sci. Technol., 2021, 82: 122-134.
Fig. 1. The relaxed 3D simulation cells for the nanocrystalline samples (a) with pure fcc structure; (b) with pure hcp structure. (c)-(f) The relaxed 3D simulation cells for the nanocrystalline fcc samples with numerous embedded hcp nano-lamellae.
Fig. 2. Deformation-induced hcp nano-lamellae and nanotwins in the CoCrNi MEA tested under cryogenic temperature and high strain rate. (a) Bright-field TEM image showing hcp nano-lamellae; (b) HREM image showing hcp nano-lamellae and DTs; (c) HREM image showing the stacking sequences for a typical hcp nano-lamella in the fcc matrix; (d)-(f) HREM images showing the structures with hcp nano-lamellae, and the hcp phase fractions are 52 %, 71 %, 93 % in the selected areas, respectively.
Fig. 3. Deformation-induced DTs in the CoCrNi MEA tested under room temperature and high strain rate. (a) Bright-field TEM image showing DTs; (b) Close-up views for the rectangular area in (a) showing secondary nanotwins; (c) HREM image taken with the <110> zone axis, showing orientation relationship of fcc matrix and twins; (d) HREM image showing the dislocations at the tip of TBs.
Fig. 4. Vickers microhardness of samples prior to and after dynamic deformation under both cryogenic and room temperatures. (a) Optical images of indentation arrays. (b) Vickers hardness comparison.
Fig. 5. (a) The simulated stress-strain curves for the nanocrystalline samples with the same interspacing (7.34 nm) and the different hcp layer widths (the curves for pure fcc and pure hcp samples are also included). (b) The effect of hcp layer width on the average flow stress.
Fig. 6. Snapshots for the pure fcc sample at various applied tensile strains: (a) 4 %; (b) 7 %: (c) 10 %. Snapshots for the pure hcp sample at various applied tensile strains: (d) 4 %; (e) 7 %: (f) 10 %.
Fig. 7. The detailed atomistic deformation mechanisms for the pure fcc sample at applied tensile strains of 10 % showing (a) deformation-induced nanotwins; (b) hcp phase transformation; (c, d) The detailed atomistic deformation mechanisms for the pure hcp sample at applied tensile strains of 10 % showing basal SFs, reverse transformation (from hcp phase to fcc phase) and < c + a > edge dislocations (1/6[$2\bar{2}03$]).
Fig. 8. (a) The detailed atomistic deformation mechanisms for the pure hcp sample at applied tensile strains of 10 % showing {$10\bar{1}1$} twins. Experimental TEM observations for the DTs in the hcp cobalt sample after SMAT: (b) The {$10\bar{1}1$} twins; (c) The secondary {$10\bar{1}1$} twins generated inside the primary {$10\bar{1}1$} twins. (d) Schematic of formation sequences and orientations of the secondary {$10\bar{1}1$} twins inside the primary {$10\bar{1}1$} twins.
Fig. 10. Snapshots at applied tensile strains of 4 % (a, c, e) and 7 % (b, d, f) for the nanocrystalline samples (a, b) with numerous embedded SFs; (c, d) with numerous embedded six hcp atom layers; (e, f) with numerous embedded ten hcp atom layers. The interspacing is kept the same (7.34 nm) for these three samples.
Fig. 11. The detailed atomistic deformation mechanisms for the nanocrystalline samples (a1-a3) with numerous embedded SFs; (b1-b3) with numerous embedded six hcp atom layers; (c1-c3) with numerous embedded ten hcp atom layers at the applied tensile strain of 4 %. The fcc atoms are not shown in this figure for the more clarity.
Fig. 12. (a) The simulated stress-strain curves for the 3D nanocrystalline samples with the same hcp layer width (six hcp atom layers) and the different interspacings. (b) The effect of interspacing on the average flow stress. (c) The effect of interspacing on the strengthening.
Fig. 13. Snapshots at applied tensile strains of 4 % (a, c) and 7 % (b, d) for the nanocrystalline samples: (a-b) The interspacing is 2.45 nm; (b) The interspacing is 5.50 nm. The width of hcp nano-lamellae is fixed (six hcp atom layers) for these two samples.
Fig. 14. The detailed atomistic deformation mechanisms for the nanocrystalline samples: (a1-a3) The interspacing is 2.45 nm; (b1-b3) The interspacing is 5.50 nm. (a1)(b1) are snapshots at the applied tensile strain of 4 %; while (a2)(a3)(b2)(b3) are snapshots at the applied tensile strain of 7 %. The fcc atoms are not shown in this figure for the more clarity.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Nat. Commun. 8 (2017), 15719.
DOI PMID |
[3] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[4] |
M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 7224-7229.
DOI URL |
[5] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016), 10602.
DOI PMID |
[6] |
B. Gan, J.M. Wheeler, Z.N. Bi, L. Liu, J. Zhang, H.Z. Fu, J. Mater. Sci. Technol. 35 (2019) 957-961.
DOI |
[7] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
[8] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[9] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
[10] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[11] |
B. Schuh, F. Mendez-Martin, B. Voelker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96 (2015) 258-268.
DOI URL |
[12] |
L.X. Yang, H.L. Ge, J. Zhang, T. Xiong, Q.Q. Jin, Y.T. Zhou, X.H. Shao, B. Zhang, Z.W. Zhu, S.J. Zheng, X.L. Ma, J. Mater. Sci. Technol. 35 (2019) 300-305.
DOI URL |
[13] |
M. Yang, L. Zhou, C. Wang, P. Jiang, F. Yuan, E. Ma, X. Wu, Scr. Mater. 172 (2019) 66-71.
DOI URL |
[14] |
X. Wu, M. Yang, P. Jiang, C. Wang, L. Zhou, F. Yuan, E. Ma, Scr. Mater. 178 (2020) 452-456.
DOI URL |
[15] |
P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Nat. Commun. 10 (2019) 489.
DOI URL |
[16] |
Z. Yang, M. Yang, Y. Ma, L. Zhou, W. Cheng, F. Yuan, X. Wu, Mater. Sci. Eng. A 793 (2020), 139854.
DOI URL |
[17] |
Y. Han, H. Li, H. Feng, K. Li, Y. Tian, Z. Jiang, J. Mater. Sci. Technol. 65 (2021) 210-215.
DOI |
[18] |
J. Li, L. Li, C. Jiang, Q.H. Fang, F. Liu, Y. Liu, P.K. Liaw, J. Mater. Sci. Technol. 57 (2020) 85-91.
DOI |
[19] |
F.X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J.Y.P. Ko, D.C. Pagan, J.C. Neuefeind, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 118 (20)(2017), 205501.
DOI PMID |
[20] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10 (2019) 3563.
DOI URL |
[21] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[22] |
F. Zhang, Y. Tong, K. Jin, H. Bei, W.J. Weber, A. Huq, A. Lanzirotti, M. Newville, D.C. Pagan, J.Y.P. Ko, Y. Zhang, Mater. Res. Lett. 6 (2018) 450-455.
DOI URL |
[23] |
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 8919-8924.
DOI PMID |
[24] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[25] | S.S. Sohn, A.K. da Silva, Y. Ikeda, F. Koermann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe,Adv. Mater. 31 (2019), 1807142. |
[26] |
H. Luo, S.S. Sohn, W. Lu, L. Li, X. Li, C.K. Soundararajan, W. Krieger, Z. Li, D. Raabe, Nat. Commun. 11 (2020) 3081.
DOI URL |
[27] |
C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, M. Ghazisaeidi, Nat. Commun. 9 (2018) 1363.
DOI URL |
[28] |
Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma, X. Wu, Acta Mater. 148 (2018) 407-418.
DOI URL |
[29] |
W. Wu, L. Guo, B. Guo, Y. Liu, M. Song, Mater. Sci. Eng. A 759 (2019) 574-582.
DOI URL |
[30] |
Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Mater. Res. Lett. 6 (2018) 236-243.
DOI URL |
[31] |
A. Mani, R. Salinas, H.F. Lopez, Mater. Sci. Eng. A 528 (2011) 3037-3043.
DOI URL |
[32] |
I. Weissensteiner, M. Petersmann, P. Erdely, A. Stark, T. Antretter, H. Clemens, V. Maier-Kiener, Acta Mater. 164 (2019) 272-282.
DOI |
[33] |
J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.-J. Lee, H.S. Kim, Acta Mater. 161 (2018) 388-399.
DOI URL |
[34] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227, -+.
DOI URL |
[35] |
P. Yu, R. Feng, J. Du, S. Shinzato, J.-P. Chou, B. Chen, Y.-C. Lo, P.K. Liaw, S. Ogata, A. Hu, Acta Mater. 181 (2019) 491-500.
DOI URL |
[36] |
S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11 (2020) 826.
DOI URL |
[37] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater. 165 (2019) 496-507.
DOI |
[38] |
W. Guo, Z. Pei, X. Sang, J.D. Poplawsky, S. Bruschi, J. Qu, D. Raabe, H. Bei, Acta Mater. 170 (2019) 176-186.
DOI URL |
[39] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132 (2017) 35-48.
DOI URL |
[40] |
X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu, Y.T. Zhu, Scr. Mater. 103 (2015) 57-60.
DOI URL |
[41] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Hoeppel, M. Goeken, J. Narayan, Y. Zhu, Acta Mater. 116 (2016) 43-52.
DOI URL |
[42] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Hoeppel, M. Goeken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[43] |
C. Zhao, J. Li, Y. Liu, W.Y. Wang, H. Kou, E. Beaugnon, J. Wang, J. Mater. Sci. Technol. 73 (2021) 83-90.
DOI URL |
[44] |
I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 4386-4390.
DOI PMID |
[45] |
R. Yuan, I.J. Beyerlein, C. Zhou, Mater. Res. Lett. 5 (2017) 251-257.
DOI URL |
[46] |
J. He, Y. Ma, D. Yan, S. Jiao, F. Yuan, X. Wu, Mater. Sci. Eng. A 726 (2018) 288-297.
DOI URL |
[47] |
J. He, F. Yuan, M. Yang, S. Jiao, X. Wu, Mater. Sci. Eng. A 756 (2019) 492-501.
DOI URL |
[48] |
J. He, F. Yuan, M. Yang, L. Zhou, S. Jiao, X. Wu, Mater. Sci. Eng. A 791 (2020), 139780.
DOI URL |
[49] |
S.I. Rao, C. Varvenne, C. Woodward, T.A. Parthasarathy, D. Miracle, O.N. Senkov, W.A. Curtin, Acta Mater. 125 (2017) 311-320.
DOI URL |
[50] |
E. Antillon, C. Woodward, S.I. Rao, B. Akdim, T.A. Parthasarathy, Acta Mater. 166 (2019) 658-676.
DOI |
[51] |
J. Li, H.T. Chen, H. Feng, Q.H. Fang, Y. Liu, F. Liu, H. Wu, P.K. Liaw, J. Mater. Sci. Technol. 54 (2020) 14-19.
DOI URL |
[52] |
J. Li, B. Xie, Q. Fang, B. Liu, Y. Liu, P.K. Liaw, J. Mater. Sci. Technol. 68 (2021) 70-75.
DOI URL |
[53] |
S.I. Rao, C. Woodward, T.A. Parthasarathy, O. Senkov, Acta Mater. 134 (2017) 188-194.
DOI URL |
[54] |
V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 1 (2002) 45-48.
DOI URL |
[55] |
J. Schiotz, K.W. Jacobsen, Science 301 (2003) 1357-1359.
DOI URL |
[56] |
X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464 (2010) 877-880.
DOI URL |
[57] |
D. Farkas, A. Caro, J. Mater. Res. 33 (2018) 3218-3225.
DOI URL |
[58] |
F. Yuan, W. Cheng, S. Zhang, X. Liu, X. Wu, Materialia 9 (2020), 100565.
DOI URL |
[59] |
O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391-1409.
DOI URL |
[60] |
A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53 (2005) 4817-4824.
DOI URL |
[61] |
W. Wang, P. Jiang, F. Yuan, X. Wu, Philos. Mag. 98 (2018) 1186-1203.
DOI URL |
[62] |
W. Wang, F. Yuan, P. Jiang, X. Wu, Sci. Rep. 7 (2017) 9550.
DOI PMID |
[63] |
B. Li, P.F. Yan, M.L. Sui, E. Ma, Acta Mater. 58 (2010) 173-179.
DOI URL |
[64] |
X.Y. Zhang, B. Li, J. Tu, Q. Sun, Q. Liu, Mater. Res. Lett. 3 (2015) 142-148.
DOI URL |
[65] |
X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, Acta Mater. 53 (2005) 681-691.
DOI URL |
[66] |
B. Li, E. Ma, Acta Mater. 57 (2009) 1734-1743.
DOI URL |
[67] |
J. Wang, Y.G. Shen, F. Song, F.J. Ke, Y.L. Bai, C. Lu, EPL 110 (2015) 36002.
DOI URL |
[68] |
W.W. Jian, G.M. Cheng, W.Z. Xu, C.C. Koch, Q.D. Wang, Y.T. Zhu, S.N. Mathaudhu, Appl. Phys. Lett. 103 (2013), 133108.
DOI URL |
[69] |
W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1 (2013) 61-66.
DOI URL |
[70] |
C. Xu, J. Zhang, S. Liu, Y. Jing, Y. Jiao, L. Xu, L. Zhang, F. Jiang, M. Zhang, R. Wu, Mater. Des. 79 (2015) 53-59.
DOI URL |
[71] |
Y.T. Zhu, X.L. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[1] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[2] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[3] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[4] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[5] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[6] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[7] | Ziyan Zhao, Juan Mu, Haifeng Zhang, Yandong Wang, Yang Ren. Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites [J]. J. Mater. Sci. Technol., 2021, 79(0): 212-221. |
[8] | Hongge Li, Yongjiang Huang, Jianfei Sun, Yunzhuo Lu. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 187-195. |
[9] | Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy [J]. J. Mater. Sci. Technol., 2021, 78(0): 238-246. |
[10] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[11] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
[12] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[13] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[14] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[15] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||