J. Mater. Sci. Technol. ›› 2021, Vol. 80: 66-74.DOI: 10.1016/j.jmst.2020.10.078
• Research Article • Previous Articles Next Articles
Zhibiao Yanga,b, Song Lub,*(), Yanzhong Tianb,*(
), Zijian Guc, Huahai Maod,e, Jian Suna,*(
), Levente Vitosb,f,g
Received:
2020-10-07
Accepted:
2020-10-26
Published:
2020-12-24
Online:
2020-12-24
Contact:
Song Lu,Yanzhong Tian,Jian Sun
About author:
jsun@sjtu.edu.cn (J. Sun).Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys[J]. J. Mater. Sci. Technol., 2021, 80: 66-74.
Alloy | Magnetic state | $\gamma _{0}^{\text{fcc}}$ | $\gamma _{isf}^{\text{fcc}}$ | $\gamma _{isf}^{\exp }$. |
---|---|---|---|---|
Cr10Co50Ni40 | FM | -37 | -17 | 34 [ |
Cr10Co60Ni30 | FM | -50 | -31 | 18 [ |
Cr15Co55Ni30 (T3) | FM | -55 | -49 | 16 [ |
Cr15Co50Ni35 (T4) | FM | -45 | -32 | 25 [ |
Cr15Co45Ni40 (T5) | FM | -27 | -15 | 37 [ |
Cr15Co40Ni45 (T6) | FM | -12 | -5 | 46 [ |
Cr20Co20Ni60 | PM | 18 | 37 | 71 [ |
Cr20Co50Ni30 | PM | -45 | -22 | 20 [ |
Cr25Co10Ni65 | PM | 15 | 35 | 71 [ |
Cr25Co30Ni45 | PM | -10 | 12 | 50 [ |
Cr25Co40Ni35 | PM | -20 | 0.5 | 41 [ |
Cr30Co20Ni50 | PM | -18 | 3.5 | 43 [ |
Cr30Co40Ni30 | PM | -58 | -23 | 11 [ |
CrCoNi | PM | -48 | -24 | 18 [ |
Cr40Co15Ni45 | PM | -24 | -9 | 30 [ |
Cr40Co30Ni30 | PM | -56 | -37 | 13 [ |
Table 1 Calculated and experimental [[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68]] SFEs for a series of ternary Cr-Co-Ni alloys at room temperature. The corresponding magnetic state as predicted inFig. 1(a) is also listed.
Alloy | Magnetic state | $\gamma _{0}^{\text{fcc}}$ | $\gamma _{isf}^{\text{fcc}}$ | $\gamma _{isf}^{\exp }$. |
---|---|---|---|---|
Cr10Co50Ni40 | FM | -37 | -17 | 34 [ |
Cr10Co60Ni30 | FM | -50 | -31 | 18 [ |
Cr15Co55Ni30 (T3) | FM | -55 | -49 | 16 [ |
Cr15Co50Ni35 (T4) | FM | -45 | -32 | 25 [ |
Cr15Co45Ni40 (T5) | FM | -27 | -15 | 37 [ |
Cr15Co40Ni45 (T6) | FM | -12 | -5 | 46 [ |
Cr20Co20Ni60 | PM | 18 | 37 | 71 [ |
Cr20Co50Ni30 | PM | -45 | -22 | 20 [ |
Cr25Co10Ni65 | PM | 15 | 35 | 71 [ |
Cr25Co30Ni45 | PM | -10 | 12 | 50 [ |
Cr25Co40Ni35 | PM | -20 | 0.5 | 41 [ |
Cr30Co20Ni50 | PM | -18 | 3.5 | 43 [ |
Cr30Co40Ni30 | PM | -58 | -23 | 11 [ |
CrCoNi | PM | -48 | -24 | 18 [ |
Cr40Co15Ni45 | PM | -24 | -9 | 30 [ |
Cr40Co30Ni30 | PM | -56 | -37 | 13 [ |
Fig. 1. (a) The composition dependent Tc in the ternary CrxCoyNi1-x-y (10≤x≤45,10≤y≤60) ternary alloys. TheTc of 300?K and 77?K are marked as dash lines. The position of the CrCoNi MEA is shown as a red star. (b) The calculatedTc with respect to Cr concentration in the ternary CrxCo(100-x)/2Ni(100-x)/2 (20≤x≤30) alloys (indicated by the solid line in (a)), compared to the available experimental data [50].
Fig. 2. The calculated$\gamma _{0}^{\text{fcc}}$, $\gamma _{\text{isf}}^{\text{fcc}}$, $\gamma _{\text{usf}}^{\text{fcc}}$ and $\gamma _{\text{utf}}^{\text{fcc}}$for ternary CrxCoyNi100-x-y (10≤x≤45,10≤y≤60) alloys as a function of Cr and Co concentrations for FM (a, c, e, g) and PM states (b, d, f, h). Results are obtained at the room temperature. TheTc of 300?K is marked by dash lines. The solid lines represent zero values of $\gamma _{0}^{\text{fcc}}$and $\gamma _{\text{isf}}^{\text{fcc}}$in (a-d). The position corresponding to the CrCoNi MEA is indicated by a red star. Available experimental results in ternary alloys are from Refs. [ 13,65].
Fig. 3. Correlation between $\gamma _{0}^{\text{fcc}}$ and $\gamma _{\text{isf}}^{\text{fcc}}$ in ternary Cr-Co-Ni alloys at both PM and FM states. Available experimental SFEs at room temperature [13,[66], [67], [68]] are also potted for comparison (values are listed inTable 1).
Fig. 4. The local magnetic moments (in units of μB) on various atoms for the FM (upper panel) and PM (lower panel) states. The position corresponding to the CrCoNi MEA is indicated by a red star.
Fig. 6. The relationship between $\gamma _{\text{isf}}^{\text{fcc}}$and $\gamma _{\text{isf}}^{\text{fcc}}/\gamma _{\text{usf}}^{\text{fcc}}$ for various metals and alloys. Results from current work are indicated by the symbol of blue star and red cross-shaped. Other data from Refs. [13,43,[78], [79], [80], [81], [82], [83]] are included.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[3] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
[4] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132 (2017) 35-48.
DOI URL |
[5] | M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, E. Karapetrova, Appl. Phys.Lett. 100 (2012), 251907. |
[6] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[7] |
F. Otto, A. Dlouh´y, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[8] |
D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Acta Mater. 98 (2015) 288-296.
DOI URL |
[9] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227.
DOI URL |
[10] |
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131 (2017) 323-335.
DOI URL |
[11] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.
DOI URL |
[12] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
[13] |
L. Remy, A. Pineau, Mater. Sci. Eng. 26 (1976) 123-132.
DOI URL |
[14] |
L. Remy, A. Pineau, Mater. Sci. Eng. 28 (1976) 99-107.
DOI URL |
[15] | S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng.A 387-389 (2004) 158-162. |
[16] |
D.T. Pierce, J.A. Jimenes, J. Bentley, D. Raabe, J.E. Wittig, Acta Mater. 100 (2015) 178-190.
DOI URL |
[17] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[18] |
B.C.D. Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283-362.
DOI URL |
[19] | X. Sun, S. Lu, R.W. Xie, X.H. An, W. Li, T. Zhang, C.X. Liang, X.D. Ding, Y. Wang, H. Zhang, L. Vitos, arXiv (2005) 09983. |
[20] |
J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B. Lee, H.S. Kim, Acta Mater. 161 (2018) 388-399.
DOI URL |
[21] |
S. Yang, M. Jiang, H. Li, Y. Liu, L. Wang, Rare Met. 31 (2012) 75-80.
DOI URL |
[22] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[23] |
Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, C.T. Liu, Scr. Mater. 130 (2017) 96-99.
DOI URL |
[24] |
M.B. Kivy, M.A. Zaeem, Scr. Mater. 139 (2017) 83-86.
DOI URL |
[25] |
L. Vitos, P.A. Korzhavyi, B. Johansson, Phys. Rev. Lett. 96 (2006), 117210.
PMID |
[26] | F. Walsh, M. Asta, R.O. Ritchie, arXiv (2004) 09086. |
[27] |
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 8919-8924.
DOI PMID |
[28] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10 (2019) 3563.
DOI URL |
[29] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[30] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[31] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[32] | B.C. Sales, K. Jin, H. Bei, J. Nichols, M.F. Chisholm, A.F. May, N.P. Butch, A.D. Christianson, M.A. McGuire, Nat.Commun. 2 (2017) 33. |
[33] |
L. Vitos, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 87 (2001), 156401.
PMID |
[34] | L. Vitos, Phys. Rev. B 64 (2001) 167. |
[35] | P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864. |
[36] | O.K. Andersen, O. Jepsen, G. Krier, in: V. Kumar, O.K. Andersen, A. Mookerjee (Eds.), Lectures on Methods of Electronic Structure Calculations, ICTP, Trieste, 1992. |
[37] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
PMID |
[38] |
B. Gyorffy, Phys. Rev. B 5 (1972) 2382.
DOI URL |
[39] |
B.L. Gy"orffy, A.J. Pindor, J. Staunton, G.M. Stocks, H. Winter, J. Phys. F Met. Phys. 15 (1985) 1337.
DOI URL |
[40] |
Z. Dong, L. Vitos, Scr. Mater. 171 (2019) 78-82.
DOI URL |
[41] |
L. Vitos, J.O. Nilsson, B. Johansson, Acta Mater. 54 (2019) 3821-3826.
DOI URL |
[42] | G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, E.P. George, J. AlloysCompd. 746 (2018) 244. |
[43] |
S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Acta Mater. 55 (2007) 6843-6851.
DOI URL |
[44] | B. Gan, J.M. Wheeler, Z. Bi, L. Liu, J. Zhang, H. Fu, J. Mater.Sci. Technol. 35 (2019) 957-961. |
[45] |
J.R. Thompson, A. Goyal, D.K. Christen, D.M. Kroeger, Phys. C 370 (2001) 169-176.
DOI URL |
[46] |
T. Nishizawa, K. Ishida, Bull. Alloy Phase Diagr. 4 (1983) 390-395.
DOI URL |
[47] |
D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater. 100 (2015) 90-97.
DOI URL |
[48] | X.X. Wu, Z. Li, Z. Rao, Y. Ikeda, B. Dutta, F. Kormann, J. Neugebauer, D. Rabbe, Phys. Rev. Mater. 4 (2020), 033601. |
[49] |
F. Körmann, D. Ma, D.D. Belyea, M.S. Lucas, C.W. Miller, B. Grabowski, M.H.F. Sluiter, Appl. Phys. Lett. 107 (2015), 142404.
DOI URL |
[50] | B.C. Sales, K. Jin, H. Bei, G.M. Stocks, G.D. Samolyuk, A.F. May, M.A. McGuire, Sci.Rep. 6 (2016) 26179. |
[51] |
P. Nash, Bull. Alloy Phase Diagr. 7 (1986) 466-476.
DOI URL |
[52] |
K. Ishida, T. Nishizawa, Bull. Alloy Phase Diagr. 11 (1990) 357-370.
DOI URL |
[53] |
F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski, X. Liu, Y. Liu, Q. Zeng, Z. Lu, Nat. Commun. 8 (2017) 1-7.
DOI |
[54] |
C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei, M. Lang, R.C. Ewing, W.L. Mao, Nat. Commun. 8 (2017) 15634.
DOI URL |
[55] |
F.X. Zhang, S. Zhao, K. Jin, H. Bei, D. Popov, C. Park, Y. Zhang, Appl. Phys. Lett. 110 (2017), 011902.
DOI URL |
[56] | B.X. Huang, X.D. Wang, Y.H. Rong, L. Wang, L. Jin, Mater. Sci. Eng. A 438 (2006) 306-311. |
[57] |
W. Wang, Z. Hou, R. Lizárraga, Y. Tian, R.P. Babu, E. Holmstrom, H. Mao, H. Larsson, Acta Mater. 176 (2019) 11-18.
DOI |
[58] | G.B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1897-1904. |
[59] | R. Li, S. Lu, D. Kim, S. Schönecker, J. Zhao, S.K. Kwon, L. Vitos, J. Phys, Condens. Matter. 28 (2016) 39. |
[60] | P.J.H. Denteneer, W. van Haeringen, J. Phys. C 20 (1987) 883. |
[61] |
R. Lizárraga, F. Pan, L. Bergqvist, E. Holmström, L. Vitos, Sci. Rep. 7 (2017) 3778.
DOI PMID |
[62] |
M. Uhl, J. Kübler, Phys. Rev. Lett. 77 (1996) 334.
PMID |
[63] |
C. Niu, C.R.LaRosa, J.Miao, M.J. Mills, Nat. Commun. 9 (2018) 1363.
DOI URL |
[64] |
F. Tian, L.K. Varga, J. Shen, L. Vitos, Comput. Mater. Sci. 111 (2016) 350-358.
DOI URL |
[65] | S. Yoshida, T. Ikeuchi, Y. Bai, N. Tsuji, Mater. Trans. 67 (2020) 113-120. |
[66] |
E.H. Köster, A.R. Thölen, A. Howie, Philos. Mag. 10 (1964) 1093-1095.
DOI URL |
[67] |
S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics 93 (2018) 269-273.
DOI URL |
[68] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[69] |
S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmstrom, S.K. Kwon, L. Vitos, Nat. Commun. 9 (2018) 2381.
DOI PMID |
[70] | S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, J. AlloysCompd. 792 (2019) 444-455. |
[71] |
M. Chandran, S.K. Sondhi, J. Appl.Phys. 109 (2011), 103525.
DOI URL |
[72] |
J. Unfried-Silgado, L. Wu, F.F. Ferreira, C.M. Garzon, A.J. Ramirez, Mater. Sci. Eng. A 558 (2012) 70-75.
DOI URL |
[73] |
J.M. Drapier, D. Coutsouradis, L. Habraken, Acta Metall. 15 (1967) 673-675.
DOI URL |
[74] |
E. Aerts, P. Delavignette, R. Siems, S. Amelinckx, J. Appl.Phys. 33 (1962) 3078-3080.
DOI URL |
[75] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
[76] |
T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. McComb, E.P. George, M. Ghazisaeidi, M.J. Mills, Acta Mater. 110 (2016) 352-363.
DOI URL |
[77] |
L. Qi, C.Q. Liu, H.W. Chen, J.F. Nie, Acta Mater. 199 (2020) 649-668.
DOI URL |
[78] | W. Li, S. Lu, Q.-M. Hu, S.K. Kwon, B. Johansson, L. Vitos, J. Phys. Condens. Matter 26 (2014), 265005. |
[79] |
Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn, P. Gumbsch, Scr. Mater. 64 (2011) 605-608.
DOI URL |
[80] |
W. Li, S. Lu, D. Kim, K. Kokko, S. Hertzman, S.K. Kwon, L. Vitos, Appl. Phys. Lett. 108 (2016), 081903.
DOI URL |
[81] |
L.Y. Tian, R. Lizárraga, H. Larsson, E. Holmström, L. Vitos, Acta Mater. 136 (2017) 215-223.
DOI URL |
[82] |
W. Zhao, W. Li, Z. Sun, S. Gong, L. Vitos, Mater. Des. 124 (2017) 100-107.
DOI URL |
[83] |
Z. Dong, S. Schönecker, D. Chen, W. Li, S. Lu, L. Vitos, Int. J. Plast. 119 (2019) 123-139.
DOI URL |
[84] |
R.J. Asaro, S. Suresh, Acta Mater. 53 (2005) 3369-3382.
DOI URL |
[85] |
M. Jo, Y.M. Koo, B.J. Lee, B. Johansson, L. Vitos, S.K. Kwon, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 6560-6565.
DOI URL |
[86] |
F.G. Coury, K.D. Clarke, C.S. Kiminami, M.J. Kaufman, A.J. Clarke, Sci. Rep. 8 (2018) 8600.
DOI URL |
[87] |
S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, N. Tsuji, Acta Mater. 171 (2019) 201-215.
DOI |
[88] |
Z. Li, H. Mao, P.A. Korzhavyi, M. Selleby, Calphad 52 (2016) 1-7.
DOI URL |
[89] | Y. Liu, H. Yang, G. Tan, S. Miyazaki, B. Jiang, Y. Liu, J. AlloysCompd. 746 (2018) 244. |
[90] |
H. Yang, Y. Liu, Acta Mater. 54 (2006) 4895-4904.
DOI URL |
[91] |
D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Scr. Mater. 165 (2019) 39-43.
DOI URL |
[92] |
W. Fang, R. Chang, P. Ji, X. Zhang, B. Liu, X. Qu, F. Yin, Metals 8 (2018) 369.
DOI URL |
[1] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[2] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[3] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[4] | Zhihua Dong, Shuo Huang, Valter Ström, Guocai Chai, Lajos Károly Varga, Olle Eriksson, Levente Vitos. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature [J]. J. Mater. Sci. Technol., 2021, 79(0): 15-20. |
[5] | T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53(0): 61-65. |
[6] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
[7] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
[8] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
[9] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[10] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. |
[11] | Zhang Zhefeng, Li Linlin, Zhang Zhenjun, Zhang Peng. Twin boundary: Controllable interface to fatigue cracking. [J]. J. Mater. Sci. Technol., 2017, 33(7): 603-606. |
[12] | Hu Bin, Luo Haiwen, Yang Feng, Dong Han. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33(12): 1457-1464. |
[13] | Tian Sugui,Zhu Xinjie,Wu Jing,Yu Huichen,Shu Delong,Qian Benjiang. Influence of Temperature on Stacking Fault Energy and Creep Mechanism of a Single Crystal Nickel-based Superalloy [J]. J. Mater. Sci. Technol., 2016, 32(8): 790-798. |
[14] | Hong Yu,Yugui Zheng,Zhiming Yao. Cavitation Erosion Corrosion Behaviour of Manganese-nickel-aluminum Bronze in Comparison with Manganese-brass [J]. J Mater Sci Technol, 2009, 25(06): 758-766. |
[15] | YANG Zhi'an SHI Changxu XIAO Yaotian Institute of Metal Research,Academia Sinica,Shenyang,110015,China.. Variation in Creep Rupture of γ′ Strengthened Superalloys with Stacking Fault Energy of Matrices [J]. J Mater Sci Technol, 1990, 6(4): 250-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||