J. Mater. Sci. Technol. ›› 2021, Vol. 80: 191-202.DOI: 10.1016/j.jmst.2021.01.002
• Research Article • Previous Articles Next Articles
Shuang Tiana, Yushuang Liub, Peigen Zhanga, Jian Zhoua,*(), Feng Xuea, ZhengMing Suna,*(
)
Received:
2020-05-29
Accepted:
2020-10-15
Published:
2021-01-05
Online:
2021-01-05
Contact:
Jian Zhou,ZhengMing Sun
About author:
zmsun@seu.edu.cn (Z. Sun).Shuang Tian, Yushuang Liu, Peigen Zhang, Jian Zhou, Feng Xue, ZhengMing Sun. Tin whiskers prefer to grow from the [001] grains in a tin coating on aluminum substrate[J]. J. Mater. Sci. Technol., 2021, 80: 191-202.
Composition | Sn (at.%) | Al (at.%) |
---|---|---|
Coating | 90.43 | 9.57 |
Primary α-Al phase | 2.94 | 97.06 |
β-Sn phase | 94.79 | 5.21 |
Table 1 The chemical composition of the as-prepared coating.
Composition | Sn (at.%) | Al (at.%) |
---|---|---|
Coating | 90.43 | 9.57 |
Primary α-Al phase | 2.94 | 97.06 |
β-Sn phase | 94.79 | 5.21 |
Fig. 3. Morphology and density of whiskers on the coating: (a) after aging for 720 h, (b) the filament type whisker, (c) the blocky hillock, (d) whiskers density as a function of aging time.
Fig. 5. Band contrast (BC) figures with the grain boundaries, Euler figures and kernel average misorientation (KAM) figures of (a-c) as-prepared Sn-Al coating, (d-f) the same region after aging for 20 h.
Fig. 6. (a) Proportion of the LAGBs and HAGBs with the same region before and after aging, and (b) the relative frequency of misorientation before and after aging.
Fig. 7. EBSD data of the rectangle region in Fig. 5(e): (a) band contrast figure, (b) Euler figure, (c) inverse pole figure along the Z direction (IPFZ), (d) the whiskers, (e) KAM figure and (f) the direction of the coordinate system.
Fig. 10. The distribution of compressive stress in the as-prepared Sn-Al coating measured by nanoindentation method. (a) A matrix of indentation containing the (001) grains and surrounding grains with perpendicular orientations, (b) stress mapping of the Sn-Al coating covered by indentations.
Fig. 11. Representative grain orientation around the whiskering grain: (a) EBSD IPFZ map with β-Sn unit cell, (b) schematic of crystal indices, (c) IPF map of Sn. The whiskering grain with black circle shows (001) orientation and the orientations of neighbouring grain with broken circle are perpendicular to (001).
Direction | CTE (K-1) | Stiffness (GPa) | Young’s Modulus (GPa) | Self-diffusivity (cm2/s) |
---|---|---|---|---|
a-axis[100] | 14.2 × 10 -6+25.5 × 10 -9×T | 75.3 | 23.6 | 8.7 × 10 -15 |
b-axis[ | 14.2 × 10 -6+25.5 × 10 -9×T | 75.3 | 23.6 | 8.7 × 10 -15 |
c-axis[001] | 28.7 × 10 -6+56.8 × 10 -9×T | 95.5 | 67.2 | 4.7 × 10 -15 |
Table 2 Anisotropic physical properties of β-Sn [ 10,54,55].
Direction | CTE (K-1) | Stiffness (GPa) | Young’s Modulus (GPa) | Self-diffusivity (cm2/s) |
---|---|---|---|---|
a-axis[100] | 14.2 × 10 -6+25.5 × 10 -9×T | 75.3 | 23.6 | 8.7 × 10 -15 |
b-axis[ | 14.2 × 10 -6+25.5 × 10 -9×T | 75.3 | 23.6 | 8.7 × 10 -15 |
c-axis[001] | 28.7 × 10 -6+56.8 × 10 -9×T | 95.5 | 67.2 | 4.7 × 10 -15 |
Fig. 12. (a) TEM thin sample with (001) Sn grain, (b) IPFZ image confirming the Sn grain is (001) orientation, (c) KAM image of the (001) grain, (d) Sn sub-grains containing many sub-grain boundaries demarcated by the arrays of dislocations, (e) bright-field image of the sub-grain boundaries and (f) sub-grain boundaries serving as dislocation sources for the motion of dislocations.
Fig. 13. (a) BC image of the cross-sectional Sn/Al bimetal, (b) IPFY image of Sn/Al sample with Sn unit cells, (c) rainbow colored image reflects the BC value of each grains and (d) KAM image of the Sn coating shows the dislocations accumulate in near-(001) grain.
Fig. 14. TEM images of the whisker and the underneath grain: (a) SEM micrograph of the FIB thinned cross-section, (b) TEM micrograph of the position in (a) illustrated by the red arrow, (c) HRTEM image of the interface between the whisker and coting, (d) HRTEM image of the underneath grain with IFFT crystal lattice, (e) HRTEM image of the Sn whisker with IFFT crystal lattice.
Fig. 15. (a) Front view of the cross-sectional whisker, (b) top view of the cross sectional whisker, (c) IPFY image of the whisker cross-section with unit cells and (d) KAM image of the whisker cross-section.
[1] |
B.D. Dunn, Circuit World 2 (1976) 32-40.
DOI URL |
[2] |
B. Illés, T. Hurtony, O. Krammer, B. Medgyes, K. Dušek, D. Dušek, Materials 12 (2019) 3609.
DOI URL |
[3] |
M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27 (2000) 95-141.
DOI URL |
[4] |
R.M. Fisher, L.S. Darken, K.G. Carroll, Acta Metall. 2 (1954) 368-373.
DOI URL |
[5] | NASA, http://nepp.nasa.gov/whisker/failures/. |
[6] |
P. Zhang, Y.M. Zhang, Z.M. Sun, J. Mater. Sci. Technol. 31 (2015) 675-698.
DOI URL |
[7] |
M.O. Peach, J. Appl. Phys. 23 (1952) 1401.
DOI URL |
[8] | J.D. Eshelby, Phys. Rev. 91 (1953) 755-756. |
[9] |
B. Horváth, B. Illés, T. Shinohara, G. Harsányi, Thin Solid Films 520 (2012) 5733-5740.
DOI URL |
[10] |
B.Z. Lee, D.N. Lee, Acta Mater. 46 (1998) 3701-3714.
DOI URL |
[11] |
B. Illés, A. Skwarek, J. Ratajczak, K. Dušek, D. Bušek, J. Alloys. Compd. 785 (2019) 774-780.
DOI URL |
[12] |
H. Chen, H.Y. Lee, C.S. Ku, A.T. Wu, J. Mater. Sci. 51 (2016) 3600-3606.
DOI URL |
[13] |
M.L. Sun, M.Y. Dong, D.F. Wang, H.Q. Ling, A.M. Hu, M. Li, Scr. Mater. 147 (2018) 114-118.
DOI URL |
[14] |
H.P. Howard, J. Cheng, P.T. Vianco, J.C.M. Li, Acta Mater. 59 (2011) 1957-1963.
DOI URL |
[15] | Y. Liu, P. Zhang, J. Yu, J. Chen, Y. Zhang, Z.M. Sun, J. Mater. Sci. Technol. 35 (2019) 1735-1739. |
[16] |
M.A. Dudek, N. Chawla, Acta Mater. 57 (2009) 4588-4599.
DOI URL |
[17] |
B. Horváth, T. Shinohara, B. Illés, J. Alloys. Compd. 577 (2013) 439-444.
DOI URL |
[18] |
C.F. Li, Z.Q. Liu, Acta Mater. 61 (2013) 589-601.
DOI URL |
[19] |
B. Illés, B. Horváth, J. Alloys. Compd. 616 (2014) 116-121.
DOI URL |
[20] |
P. Jagtap, A. Chakraborty, P. Eisenlohr, P. Kumar, Acta Mater. 134 (2017) 346-359.
DOI URL |
[21] |
K.N. Tu, J.C.M. Li, Mater. Sci. Eng. A 409 (2005) 131-139.
DOI URL |
[22] |
W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, L. Nguyen, Acta Mater. 51 (2003) 6253-6261.
DOI URL |
[23] |
J. Hektor, S.A. Hall, N.A. Henningsson, J. Engqvist, M. Ristinmaa, F. Lenrick, J.P. Wright, Materials 12 (2019) 446.
DOI URL |
[24] |
M. Sobiech, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, G.E. Ice, Appl. Phys. Lett. 94 (2009), 221901.
DOI URL |
[25] |
F. Pei, N. Jadhav, E. Buchovecky, A.F. Bower, E. Chason, W. Liu, J.Z. Tischler, G.E. Ice, R. Xu, J. Appl. Phys. 119 (2016), 105302.
DOI URL |
[26] |
J. Hektor, J.B. Marijon, M. Ristinmaa, S.A. Hall, H. Hallberg, S. Iyengar, J.S. Micha, O. Robach, F. Grennerat, O. Castelnau, Scr. Mater. 144 (2018) 1-4.
DOI URL |
[27] |
P. Sarobol, W.H. Chen, A.E. Pedigo, P. Su, J.E. Blendell, C.A. Handwerker, J. Mater. Res. 28 (2013) 747-756.
DOI URL |
[28] |
M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, Appl. Phys. Lett. 93 (2008), 011906.
DOI URL |
[29] |
A. Frye, G.T. Galyon, L. Palmer, IEEE Trans. Electron. Packag. Manuf. 30 (2007) 2-10.
DOI URL |
[30] |
P. Sarobol, A.E. Pedigo, P. Su, J.E. Blendell, C.A. Handwerker, IEEE Trans. Electron. Packag. Manuf. 33 (2010) 159-164.
DOI URL |
[31] |
F. Pei, N. Jadhav, E. Chason, Appl. Phys. Lett. 100 (2012), 221902.
DOI URL |
[32] | K.L. Huang, N. Kang, Q. Zhou, Y.Z. Huang, J. Mater. Sci. Technol. 28 (2012) 844-852. |
[33] |
Y. Li, X. Leng, S. Cheng, J. Yan, Mater. Des. 40 (2012) 427-432.
DOI URL |
[34] |
W. Guo, X. Ma, M. Gao, J. Yan, Mater. Lett. 231 (2018) 146-149.
DOI URL |
[35] |
A. Bergauer, H. Bangert, Ch. Eisenmenger-Sittner, P.B. Barna, Thin Solid Films 258 (1995) 115-122.
DOI URL |
[36] |
M.J. Bozack, S.K. Snipes, G.N. Flowers, Surf. Sci. 652 (2016) 355-366.
DOI URL |
[37] | W.F. Gale, T.C. Totemeier, Oxford, 2004, pp. 11-52. |
[38] |
M.L. Sun, X.P. Long, M.Y. Dong, Y.Y. Xia, F.T. Hu, A.M. Hu, M. Li, Mater. Charact. 134 (2017) 354-361.
DOI URL |
[39] |
L.M. Ma, Y. Zuo, S.H. Liu, F. Guo, A. Lee, K.N. Subramanian, J. Alloys. Compd. 657 (2016) 400-407.
DOI URL |
[40] | L.M. Ma, Y. Zuo, S.H. Liu, F. Guo, J. Korean Inst. Electr. Electron. Mater. Eng 45 (2016) 44-50. |
[41] | S.H. Liu, L.M. Ma, Y. Shu, K.N. Subramanian, A. Lee, F. Guo, J. Korean Inst. Electr. Electron. Mater. Eng 43 (2014) 26-32. |
[42] |
Z.M. Lai, D. Ye, J. Mater. Sci.-Mater. Electron 27 (2016) 1177-1183.
DOI URL |
[43] |
A. Kantarcıoğlu, Y.E. Kalay, Mater. Sci. Eng. A 593 (2014) 79-84.
DOI URL |
[44] | K.N. Reeve, C.A. Handwerker, J. Korean Inst, Electr. Electron. Mater. Eng. 47 (2018) 61-76. |
[45] |
F. Pei, E. Buchovecky, A. Bower, E. Chason, Acta Mater. 129 (2017) 462-473.
DOI URL |
[46] |
C.F. Li, Z.Q. Liu, P.J. Shang, J.K. Shang, Scr. Mater. 65 (2011) 1049-1052.
DOI URL |
[47] |
C.F. Li, Z.Q. Liu, J.K. Shang, J. Alloys. Compd. 550 (2013) 231-238.
DOI URL |
[48] |
A. Baated, K.S. Kim, K. Suganuma, J. Mater. Res. 25 (2010) 2175-2182.
DOI URL |
[49] |
Q.K. Zhang, Z.F. Zhang, Scr. Mater. 67 (2012) 289-292.
DOI URL |
[50] |
R.R. Shen, V. Ström, P. Efsing, Mater. Sci. Eng. A 674 (2016) 171-177.
DOI URL |
[51] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
[52] |
K.S. Kumar, L. Reinbold, A.F. Bower, E. Chason, J. Mater. Res. 23 (2008) 2916-2934.
DOI URL |
[53] |
E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, K.S. Kumar, Appl. Phys. Lett. 92 (2008), 171901.
DOI URL |
[54] |
J.W. Xian, G. Zeng, S.A. Belyakov, Q. Gu, K. Nogita, C.M. Gourlay, Intermetallics, 91 (2017) 50-64.
DOI URL |
[55] |
W.H. Chen, P. Sarobol, J.R. Holaday, C.A. Handwerker, J.E. Blendell, J. Mater. Res. 29 (2014) 197-206.
DOI URL |
[56] |
C.Y. Chang, R.W. Vook, Thin Solid Films 228 (1993) 205-209.
DOI URL |
[57] |
A.J. Wilkinson, D.J. Dingley, Acta Metall. 40 (1992) 3357-3368.
DOI URL |
[58] | S.N.G. Chu, J.C.M. Li, Mater. Sci. Eng. 39 (1979) 1-10. |
[59] |
P.J. Chiang, J.Y. Wu, H.Y. Yu, C.R. Kao, JOM 71 (2019) 2998-3011.
DOI URL |
[60] |
F.H. Huang, H.B. Huntington, Phys. Rev. B 9 (1974) 1479.
DOI URL |
[61] | M.S. Sellers, A.J. Schultz, C. Basaran, D.A. Kofke, Phys. Rev. B 81 (2010), 134111. |
[62] |
M.L. Huang, L. Wang, C.M.L. Wu, J. Mater. Res. 17 (2002) 2897-2903.
DOI URL |
[1] | Jingwen Tang, Peigen Zhang, Yushuang Liu, Chengjie Lu, Yan Zhang, Wei He, Wubian Tian, Wei Zhang, Zhengming Sun. Selective growth of tin whiskers from its alloys on Ti2SnC [J]. J. Mater. Sci. Technol., 2020, 54(0): 206-210. |
[2] | Yang Shen, Ju Leng, Cong Wang. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding [J]. J. Mater. Sci. Technol., 2019, 35(8): 1747-1752. |
[3] | Chenxu Zhanga, Yu-Ping Zeng, Dongxu Yao, Jinwei Yin, Kaihui Zuo, Yongfeng Xia, Hanqin Liang. The improved mechanical properties of Al matrix composites reinforced with oriented β-Si3N4 whisker [J]. J. Mater. Sci. Technol., 2019, 35(7): 1345-1353. |
[4] | Ruiwu Li, Yanwen Zhou, Maolin Sun, Zhen Gong, Yuanyuan Guo, Xitao Yin, Fayu Wu, Wutong Ding. Gas sensing selectivity of oxygen-regulated SnO2 films with different microstructure and texture [J]. J. Mater. Sci. Technol., 2019, 35(10): 2232-2237. |
[5] | Wentuo Han, Pingping Liu, Xiaoou Yi, Qian Zhan, Farong Wan, Kiyohiro Yabuuchi, Hisashi Serizawa, Akihiko Kimura. Impact of friction stir welding on recrystallization of oxide dispersion strengthened ferritic steel [J]. J. Mater. Sci. Technol., 2018, 34(1): 209-213. |
[6] | Zheng Xuehao,Zhang Hongwang. Experimental Determination of Deformation Induced Lattice Rotation by EBSD Technique for Slip System Analysis [J]. J. Mater. Sci. Technol., 2017, 33(1): 90-98. |
[7] | Lin Jinbao,Wang Xinyi,Ren Weijie,Yang Xuexia,Wang Qudong. Enhanced Strength and Ductility Due to Microstructure Refinement and Texture Weakening of the GW102K Alloy by Cyclic Extrusion Compression [J]. J. Mater. Sci. Technol., 2016, 32(8): 783-789. |
[8] | Yuna Wu, Hengcheng Liao, Jian Yang, Kexin Zhou. Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion [J]. J. Mater. Sci. Technol., 2014, 30(12): 1271-1277. |
[9] | Pasi P. Suikkanen, Cyril Cayron, Anthony J. DeArdo, L. Pentti Karjalainen. Crystallographic Analysis of Isothermally Transformed Bainite in 0.2C–2.0Mn–1.5Si–0.6Cr Steel Using EBSD [J]. J. Mater. Sci. Technol., 2013, 29(4): 359-366. |
[10] | Y. Huang. Evolution of Microstructure and Texture during Hot Deformation f a Commercially Processed Supral100 [J]. J Mater Sci Technol, 2012, 28(6): 531-536. |
[11] | Ying Liang, Mingyue Liu, Jixin Chen, Xiaoxia Liu, Yanchun Zhou. Electrodeposition and Characterization of Ni/Ti3Si(Al)C2 Composite Coatings [J]. J Mater Sci Technol, 2011, 27(11): 1016-1024. |
[12] | Lihong Xue Youwei Yan. Preparation of Oriented Barium Titanate Thin Films by Combination of Electrophoretic Deposition with Hydrothermal Treatment [J]. J Mater Sci Technol, 2010, 26(11): 996-1000. |
[13] | Yan NIU, F.Gesmundo. Phase Stability, Kinetic Diagrams and Diffusion Path in High Temperature Oxidation of Binary Solid-Solution Alloys [J]. J Mater Sci Technol, 2003, 19(06): 545-552. |
[14] | WANG Fuhui;LOU Hanyi;LIU Dacheng;CAO Chunan Institute of Corrosion and Protection of Metals, Academia Sinica, Shenyang, China.. Texture of Magnetron Sputter-deposited 1Cr18Ni9Ti Stainless Steel [J]. J Mater Sci Technol, 1989, 5(1): 53-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||