J. Mater. Sci. Technol. ›› 2021, Vol. 78: 1-19.DOI: 10.1016/j.jmst.2020.09.045
• Review Article • Next Articles
Jie Wang, Sijia Sun, Run Zhou, Yangzi Li, Zetian He, Hao Ding*(), Daimei Chen, Weihua Ao
Received:
2020-07-26
Revised:
2020-09-25
Accepted:
2020-09-29
Published:
2021-07-10
Online:
2020-11-14
Contact:
Hao Ding
About author:
*E-mail address: dinghao113@126.com (H. Ding).Jie Wang, Sijia Sun, Run Zhou, Yangzi Li, Zetian He, Hao Ding, Daimei Chen, Weihua Ao. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4[J]. J. Mater. Sci. Technol., 2021, 78: 1-19.
Fig. 4. The chemical environment of doped Cu atoms. (a) Copper K-edge XANES spectra of Cu0.5-ZIS and Cu3.6-ZIS compared with Cu0 (Cu foil), Cu+ (Cu2S), and Cu2+ (CuS) standards. (b) Magnitude of the Fourier transforms of k3-weighted Cu K-edge EXAFS functions in Cu0.5-ZIS, Cu3.6-ZIS, CuS, and Cu2S. (c) Cu K-edge extended EXAFS oscillation function of CuS, Cu2S, Cu0.5-ZIS, and Cu3.6-ZIS. (d) Structure illustration and formation energy of atomic substitutional forms. (e) The corresponding EXAFS fitting results of Cu0.5-ZIS in r space. (f) The corresponding EXAFS fitting results of Cu3.6-ZIS in r space. Ref. [104] Copyright (2018) WILEY-VCH.
Fig. 5. Effect of N doping on ZnIn2S4. TA spectra of (a) ZnIn2S4 and (b) N-doped ZnIn2S4, (c) Mott-Schottky curves, (d) UPS spectra and (e) VB XPS spectra of ZnIn2S4 and N-doped ZnIn2S4. (f) Schematic illustration of the band structure of the pristine ZnIn2S4 and N-doped ZnIn2S4 samples. Ref. [111] Copyright (2019) Royal Society of Chemistry.
Fig. 6. The sulfur vacancy in ZnIn2S4. (a) false-color image of the HRTEM image of Vs-M- ZnIn2S4 nanosheets. (b) false-color image of the HRTEM image. (c) Side view structural model of Vs-M-ZnIn2S4 (the S atoms at the bottom are red, and the S atoms at the top are yellow), (d) corresponding of (c) charge density distributions of Vs-M- ZnIn2S4, and the distribution of charge density at the edge of conduction band of (e) perfect ZnIn2S4 structure and (f) Vs-M-ZnIn2S4. Reprinted with permission from Ref. [114] Copyright (2018) American Chemical Society.
Fig. 8. Effect of hydrogenation engineering on ZnIn2S4. (a) UV-vis DRS spectra and photographs (inset in a), (b) Tauc plots, (c) Photoluminescence (PL) spectra, (d) Electrochemical impedance spectra. Ref. [120] Copyright (2018) Elsevier.
Fig. 9. The transfer process of the photogenerated electrons (e-) and holes (h+) in the ZnIn2S4 with Co9S8 cocatalyst and the photocatalytic mechanism for Cr(VI) reduction and H2 evolution under visible-light irradiation. Ref. [136] Copyright (2020) WILEY-VCH.
Reaction | E (V) vs NHE (pH = 0) |
---|---|
H2O+ h+ → OH· + H+ | 2.38 |
2H2O +2h+ →H2O2+2H+ | 1.763 |
H2O2 +h+→ •O2- + 2H+ | 1.72 |
O2+e-→ •O2- | -0.33 |
O2+ H2O+ e-→ H2O2+OH- | -0.134 |
H2O2+ e- →OH·+OH- | 0.93 |
Table 1 Standard Redox Potentials for the Mentioned Reactions in Pollutants removal.
Reaction | E (V) vs NHE (pH = 0) |
---|---|
H2O+ h+ → OH· + H+ | 2.38 |
2H2O +2h+ →H2O2+2H+ | 1.763 |
H2O2 +h+→ •O2- + 2H+ | 1.72 |
O2+e-→ •O2- | -0.33 |
O2+ H2O+ e-→ H2O2+OH- | -0.134 |
H2O2+ e- →OH·+OH- | 0.93 |
Photocatalyst | light source | photocatalyst concentration (g·L-1) | Pollutants | Photocatalytic degradation activity | Ref. |
---|---|---|---|---|---|
In2O3/ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.5 | 2,4-dichlorophenol (20 mg/L) | 0.0246 min-1 | [ |
ZnIn2S4/In(OH)3 | 300 W Xe lamp, λ > 420 nm | 0.1 | methylene blue(5·10-5 M) | 95 % (3.5 h) | [ |
BiVO4/ZnIn2S4 | LED lamp | 0.2 | methyl orange (15 mg/L) | 0.00997 min-1 | [ |
p- ZnIn2S4/rGO/n-g-C3N4 | Visible light LED lamp (2 W) | Used as an electrode | Triclosan (50 mg/L) | 83 % (0.5 h) | [ |
SiO2@TiO2@ZnIn2S4 | 00 W Xe lamp, λ > 420 nm | 0.4 | MB (30 mg/L) | 99.5 % (25 min) | [ |
Bi2S3/BiOCl@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Cr (VI) (50 mg/L) | 21.7 mg L-1 (10 min) | [ |
ZnIn2S4/MoS2 | LED white light (50 W YNL Model COB) | 0.5 | Cr (VI)(10 ppm) | 1.4 × 10-2 min-1 | [ |
ZnIn2S4/SnS2 | 300 W Xe lamp, λ > 420 nm | 0.5 | Cr (VI) (50 mg/L) | 100 %(70 min) | [ |
UiO-66-(COOH)2/ ZnIn2S4 | 500W Xe lamp | 0.4 | Cr (VI) (50 mg/L) | 98.4 %(60 min) | [ |
ZnIn2S4@Fe3O4 | 300 W Xe lamp, λ > 400 nm | 0.2 | Rh B (20 mg/L) | 0.02008 min-1 | [ |
ZnIn2S4@N-Doped Hollow Carbon | 300 W Xe lamp, λ > 420 nm | 1 | Cr (VI) (50 mg/L) | 100 % (50 min) | [ |
WO2.72/ ZnIn2S4 | 300 W Xe lamp, λ > 400 nm | 1 | tetracycline (50 mg/L) | 97.3 % (60 min) | [ |
ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Cr (VI) (50 mg L-1) | 39.3 mg L-1 (60 min) | [ |
CQD/ZnIn2S4 | 250 W Xe lamp, λ > 420 nm | 0.25 | Tetracycline (10 mg L-1) | 0.01107 min-1 | [ |
Fe-doped ZnIn2S4 | 100 W Tungsten-Halogen and the light intensity was 1925 mW/cm2 | 0.5 | 2,4,6-tribromophenol (0.12 mmol·L-1) | 0.436 min-1 | [ |
Table 2 Pollutants removal of ZnIn2S4 based composites.
Photocatalyst | light source | photocatalyst concentration (g·L-1) | Pollutants | Photocatalytic degradation activity | Ref. |
---|---|---|---|---|---|
In2O3/ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.5 | 2,4-dichlorophenol (20 mg/L) | 0.0246 min-1 | [ |
ZnIn2S4/In(OH)3 | 300 W Xe lamp, λ > 420 nm | 0.1 | methylene blue(5·10-5 M) | 95 % (3.5 h) | [ |
BiVO4/ZnIn2S4 | LED lamp | 0.2 | methyl orange (15 mg/L) | 0.00997 min-1 | [ |
p- ZnIn2S4/rGO/n-g-C3N4 | Visible light LED lamp (2 W) | Used as an electrode | Triclosan (50 mg/L) | 83 % (0.5 h) | [ |
SiO2@TiO2@ZnIn2S4 | 00 W Xe lamp, λ > 420 nm | 0.4 | MB (30 mg/L) | 99.5 % (25 min) | [ |
Bi2S3/BiOCl@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Cr (VI) (50 mg/L) | 21.7 mg L-1 (10 min) | [ |
ZnIn2S4/MoS2 | LED white light (50 W YNL Model COB) | 0.5 | Cr (VI)(10 ppm) | 1.4 × 10-2 min-1 | [ |
ZnIn2S4/SnS2 | 300 W Xe lamp, λ > 420 nm | 0.5 | Cr (VI) (50 mg/L) | 100 %(70 min) | [ |
UiO-66-(COOH)2/ ZnIn2S4 | 500W Xe lamp | 0.4 | Cr (VI) (50 mg/L) | 98.4 %(60 min) | [ |
ZnIn2S4@Fe3O4 | 300 W Xe lamp, λ > 400 nm | 0.2 | Rh B (20 mg/L) | 0.02008 min-1 | [ |
ZnIn2S4@N-Doped Hollow Carbon | 300 W Xe lamp, λ > 420 nm | 1 | Cr (VI) (50 mg/L) | 100 % (50 min) | [ |
WO2.72/ ZnIn2S4 | 300 W Xe lamp, λ > 400 nm | 1 | tetracycline (50 mg/L) | 97.3 % (60 min) | [ |
ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Cr (VI) (50 mg L-1) | 39.3 mg L-1 (60 min) | [ |
CQD/ZnIn2S4 | 250 W Xe lamp, λ > 420 nm | 0.25 | Tetracycline (10 mg L-1) | 0.01107 min-1 | [ |
Fe-doped ZnIn2S4 | 100 W Tungsten-Halogen and the light intensity was 1925 mW/cm2 | 0.5 | 2,4,6-tribromophenol (0.12 mmol·L-1) | 0.436 min-1 | [ |
Reaction | E (V) vs NHE (pH = 0) |
---|---|
2H+ + 2e- → H2 (g) | 0 |
2H2O (aq) + 4h+ → O2 (g) + 4H+ | 1.230 |
Table 3 Standard Redox Potentials for the Mentioned Reactions in Photocatalytic Hydrogen Evolution.
Reaction | E (V) vs NHE (pH = 0) |
---|---|
2H+ + 2e- → H2 (g) | 0 |
2H2O (aq) + 4h+ → O2 (g) + 4H+ | 1.230 |
Photocatalyst | Light source | Photocatalyst concentration (g·L-1) | Sacrificial agent | Co-catalyst | Performance (mmol h-1 g-1) | AQY | Ref. |
---|---|---|---|---|---|---|---|
ZnIn2S4/In(OH)3 | 350 W Xe lamp, λ > 420 nm | 1 | TEOA | Pt | 0.147 mmol h-1 | 38.3 % @420 nm | [ |
Ti3C2TX@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.5 | TEOA | Pt | 3.475 | 11.14 %@420 nm | [ |
BQ@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.2 | Na2S/Na2SO3 | Pt | 1.278 | 0.25 %@450nm | [ |
CeO2@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.25 | Na2S/Na2SO3 | 0.847 | [ | ||
Co9S8@ZnIn2S4 | 300 W Xe lamp, λ > 400 nm | 1 | TEOA | 9.039 | 5.61 %@405nm | [ | |
ZnIn2S4@In(OH)3-NiS | 300 W Xe lamp, λ > 420 nm | 0.5 | lactic acid | 7.010 | 14.3 %@420 nm. | [ | |
WS2/ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1.5 | lactic acid | 2.55 | 3.2 % at 420 nm | [ | |
SiO2@TiO2@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.4 | MB, TEOA | 0.6183 | [ | ||
ZnIn2S4/MoS2 | 150 Xe lamp | 1 | Na2S/Na2SO3 | 0.2 | 0.19 %@532nm | [ | |
ZnIn2S4@NH2-MIL-53(Fe/Co0.75) | 300 W Xe lamp, λ > 420 nm | 0.25 | Na2S/Na2SO3 | Pt | 161724.8 μmol/g in 6 h. | [ | |
ZnIn2S4@Co/N-Doped Graphitic Carbon | 300W Xe lamp, λ > 400 nm | 0.66 | TEOA | 11.27 | 5.07 %@420 | [ | |
Cu-ZnIn2S4 | about 1 Sun power, | 1 | ascorbic acid | Pt | 26.2 | 4.76 %@420 nm. | [ |
Zn(1-2x)(CuGa)xIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | Pt | 1.65 | [ | |
ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | Pt/Pd | 1.582 | 3.57 % @40,518 nm. | [ |
UiO-66@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.25 | TEOA | 1.86 | 1.4 %@420 nm | [ | |
Ag0.2Au0.8/ZnIn2S4/TiO2 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | 0.986 | 1.47 % (whole visible light range) | [ | |
rGO/TiO2/ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | 0.462 | 0.6888 % (whole visible light range) | [ |
Table 4 List of Photocatalytic Hydrogen Evolution Systems.
Photocatalyst | Light source | Photocatalyst concentration (g·L-1) | Sacrificial agent | Co-catalyst | Performance (mmol h-1 g-1) | AQY | Ref. |
---|---|---|---|---|---|---|---|
ZnIn2S4/In(OH)3 | 350 W Xe lamp, λ > 420 nm | 1 | TEOA | Pt | 0.147 mmol h-1 | 38.3 % @420 nm | [ |
Ti3C2TX@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.5 | TEOA | Pt | 3.475 | 11.14 %@420 nm | [ |
BQ@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.2 | Na2S/Na2SO3 | Pt | 1.278 | 0.25 %@450nm | [ |
CeO2@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.25 | Na2S/Na2SO3 | 0.847 | [ | ||
Co9S8@ZnIn2S4 | 300 W Xe lamp, λ > 400 nm | 1 | TEOA | 9.039 | 5.61 %@405nm | [ | |
ZnIn2S4@In(OH)3-NiS | 300 W Xe lamp, λ > 420 nm | 0.5 | lactic acid | 7.010 | 14.3 %@420 nm. | [ | |
WS2/ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1.5 | lactic acid | 2.55 | 3.2 % at 420 nm | [ | |
SiO2@TiO2@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.4 | MB, TEOA | 0.6183 | [ | ||
ZnIn2S4/MoS2 | 150 Xe lamp | 1 | Na2S/Na2SO3 | 0.2 | 0.19 %@532nm | [ | |
ZnIn2S4@NH2-MIL-53(Fe/Co0.75) | 300 W Xe lamp, λ > 420 nm | 0.25 | Na2S/Na2SO3 | Pt | 161724.8 μmol/g in 6 h. | [ | |
ZnIn2S4@Co/N-Doped Graphitic Carbon | 300W Xe lamp, λ > 400 nm | 0.66 | TEOA | 11.27 | 5.07 %@420 | [ | |
Cu-ZnIn2S4 | about 1 Sun power, | 1 | ascorbic acid | Pt | 26.2 | 4.76 %@420 nm. | [ |
Zn(1-2x)(CuGa)xIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | Pt | 1.65 | [ | |
ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | Pt/Pd | 1.582 | 3.57 % @40,518 nm. | [ |
UiO-66@ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 0.25 | TEOA | 1.86 | 1.4 %@420 nm | [ | |
Ag0.2Au0.8/ZnIn2S4/TiO2 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | 0.986 | 1.47 % (whole visible light range) | [ | |
rGO/TiO2/ZnIn2S4 | 300 W Xe lamp, λ > 420 nm | 1 | Na2S/Na2SO3 | 0.462 | 0.6888 % (whole visible light range) | [ |
Reaction | E (V) vs NHE (pH = 0) |
---|---|
2CO2 (g) + 2H+ + 2e- → HOOCCOOH (aq) | -0.481 |
CO2 (g) + 2H+ + 2e- → HCOOH (aq) | -0.199 |
CO2 (g) + 2H+ + 2e- → CO (g) + H2O | -0.117 |
CO2 (g) + 4H+ + 4e- → HCHO (aq) + 2H2O | -0.07 |
CO2 (g) + 8H+ + 8e- → CH4 (g) + 2H2O | 0.169 |
CO2 (g) + 6H+ + 6e- → CH3OH (aq) + H2O | 0.03 |
2CO2 (g) + 8H++ 12e- → C2H4(g) + 12OH- | 0.07 |
2CO2 (g) + 9H2O+12e--→C2H5OH (aq) + 12OH- | 0.08 |
3CO2 (g) + 13H2O + 18e- → C3H7OH (aq) +18OH- | 0.09 |
Table 5 Standard Redox Potentials for the Mentioned Reactions in Photocatalytic Reduction of CO2.
Reaction | E (V) vs NHE (pH = 0) |
---|---|
2CO2 (g) + 2H+ + 2e- → HOOCCOOH (aq) | -0.481 |
CO2 (g) + 2H+ + 2e- → HCOOH (aq) | -0.199 |
CO2 (g) + 2H+ + 2e- → CO (g) + H2O | -0.117 |
CO2 (g) + 4H+ + 4e- → HCHO (aq) + 2H2O | -0.07 |
CO2 (g) + 8H+ + 8e- → CH4 (g) + 2H2O | 0.169 |
CO2 (g) + 6H+ + 6e- → CH3OH (aq) + H2O | 0.03 |
2CO2 (g) + 8H++ 12e- → C2H4(g) + 12OH- | 0.07 |
2CO2 (g) + 9H2O+12e--→C2H5OH (aq) + 12OH- | 0.08 |
3CO2 (g) + 13H2O + 18e- → C3H7OH (aq) +18OH- | 0.09 |
Photocatalyst | Reaction system | Photocatalyst dosage (mg) | Reactor (mL) | Light source | Performance (μmol h-1 g-1) | Ref. |
---|---|---|---|---|---|---|
Pd/ ZnIn2S4 | 50 mL of a 0.08 M sodium bicarbonate solution in presence of 0.08 M HCl at 100 °C. | 50 mg | 30 cm × 15 cm × 5 cm | 300 W Xe lamp, λ > 420 nm | CH3OH:0.8 | [ |
VZn-rich One-Unit-Cell ZnIn2S4 | CO2 (1 atm), deionized water(2 mL), 298 ± 0.2 K | 0.1 g | - | PLS-SXE300/300UV Xe lamp with a standard AM 1.5 filter, outputting the light density of about 100 mW/cm2 | CO:33.2 | [ |
ZnIn2S4 nanosheets/TiO2 nanobelts | CO2 (1 atm), 0.4 mL of deionized water, | 0.1g | - | 500 W xenon lamp | CH4:1.135 | [ |
ZnIn2S4-In2O3 | CO2 (1 atm), 2’2-bipyridine (15 mg), 2 μmol of CoCl2, 1 mL of triethanolamine, 2 mL H2O, 3 mL acetonitrile, ty. | 4mg | 80 mL | 300W Xe lamp, λ > 400 nm | CO:3075 | [ |
Polymeric Carbon Nitride - ZnIn2S4 | CO2 (1 atm), bipyridine (20 mg), solvent (6 mL, acetonitrile: H2O = 2: 1), TEOA (1 mL) and CoCl2(1 μmol), | 50 mg | 80 mL | 300 W Xe lamp, λ > 420 nm | CO:44.6 | [ |
3D Hierarchical ZnIn2S4 Nanosheets with Rich Zn Vacancies | CO2 (0.04 MPa), acetonitrile (45 mL), TEOA (5 mL), reactor. | 20 mg | (110 mL) | 300 W Xe lamp with an AM 1.5 G filter | CO:255.8 | [ |
CeOx-S/ZnIn2S4 | CO2 (1 atm), H2O (0.5 mL), CH3CN (0.5 mL), triethylamine (0.1 mL), 42 °C. | 10 mg | - | The 9 W LEDs centred at 455 nm | CO:180 | [ |
ZnIn2S4@CNO | CO2 (1 atm), bipyridine (20 mg), solvent (6 mL, acetonitrile: H2O = 2:1), TEOA (1 mL), and CoCl2 (1 μmol), 40℃. | 50 mg | 200 mL | 300 W Xe lamp, λ > 400 nm | CO:12.67 CH4:0.98 | [ |
Table 6 List of Photocatalytic Reduction of CO2.
Photocatalyst | Reaction system | Photocatalyst dosage (mg) | Reactor (mL) | Light source | Performance (μmol h-1 g-1) | Ref. |
---|---|---|---|---|---|---|
Pd/ ZnIn2S4 | 50 mL of a 0.08 M sodium bicarbonate solution in presence of 0.08 M HCl at 100 °C. | 50 mg | 30 cm × 15 cm × 5 cm | 300 W Xe lamp, λ > 420 nm | CH3OH:0.8 | [ |
VZn-rich One-Unit-Cell ZnIn2S4 | CO2 (1 atm), deionized water(2 mL), 298 ± 0.2 K | 0.1 g | - | PLS-SXE300/300UV Xe lamp with a standard AM 1.5 filter, outputting the light density of about 100 mW/cm2 | CO:33.2 | [ |
ZnIn2S4 nanosheets/TiO2 nanobelts | CO2 (1 atm), 0.4 mL of deionized water, | 0.1g | - | 500 W xenon lamp | CH4:1.135 | [ |
ZnIn2S4-In2O3 | CO2 (1 atm), 2’2-bipyridine (15 mg), 2 μmol of CoCl2, 1 mL of triethanolamine, 2 mL H2O, 3 mL acetonitrile, ty. | 4mg | 80 mL | 300W Xe lamp, λ > 400 nm | CO:3075 | [ |
Polymeric Carbon Nitride - ZnIn2S4 | CO2 (1 atm), bipyridine (20 mg), solvent (6 mL, acetonitrile: H2O = 2: 1), TEOA (1 mL) and CoCl2(1 μmol), | 50 mg | 80 mL | 300 W Xe lamp, λ > 420 nm | CO:44.6 | [ |
3D Hierarchical ZnIn2S4 Nanosheets with Rich Zn Vacancies | CO2 (0.04 MPa), acetonitrile (45 mL), TEOA (5 mL), reactor. | 20 mg | (110 mL) | 300 W Xe lamp with an AM 1.5 G filter | CO:255.8 | [ |
CeOx-S/ZnIn2S4 | CO2 (1 atm), H2O (0.5 mL), CH3CN (0.5 mL), triethylamine (0.1 mL), 42 °C. | 10 mg | - | The 9 W LEDs centred at 455 nm | CO:180 | [ |
ZnIn2S4@CNO | CO2 (1 atm), bipyridine (20 mg), solvent (6 mL, acetonitrile: H2O = 2:1), TEOA (1 mL), and CoCl2 (1 μmol), 40℃. | 50 mg | 200 mL | 300 W Xe lamp, λ > 400 nm | CO:12.67 CH4:0.98 | [ |
Reaction | E (V) vs NHE (pH = 0) |
---|---|
N2 + e- → N2- | -4.16 |
N2 + H+ + e- → N2H | -3.20 |
N2 + 2H+ + 2 e- → N2H2 | -1.32 |
N2 + 4H+ + 4 e- → N2H4 | -0.36 |
N2 + 5H+ + 4e-→ N2H5+ | -0.23 |
N2 + 6H+ + 6e-→ 2NH3 | -0.137 |
NO2 (g)+2H2O+3 h+→ NO3- + 4H+ | 0.957 |
NO2 (g)+H2O + h+→ NO3- +2H+ | 0.80 |
NH3+H2O→NH3·h2O⇋NH4++OH- |
Table 7 Standard Redox Potentials for the Mentioned Reactions in Photocatalytic Nitrogen Fixation.
Reaction | E (V) vs NHE (pH = 0) |
---|---|
N2 + e- → N2- | -4.16 |
N2 + H+ + e- → N2H | -3.20 |
N2 + 2H+ + 2 e- → N2H2 | -1.32 |
N2 + 4H+ + 4 e- → N2H4 | -0.36 |
N2 + 5H+ + 4e-→ N2H5+ | -0.23 |
N2 + 6H+ + 6e-→ 2NH3 | -0.137 |
NO2 (g)+2H2O+3 h+→ NO3- + 4H+ | 0.957 |
NO2 (g)+H2O + h+→ NO3- +2H+ | 0.80 |
NH3+H2O→NH3·h2O⇋NH4++OH- |
[1] |
A. Fujishima, K. Honda, Nature 238 (1972) 37-38, http://dx.doi.org/10.1038/238037a0.
URL PMID |
[2] |
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019)2109-2125, http://dx.doi.org/10.1039/c8cs00542g.
DOI URL |
[3] |
J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136 (2014)8839-8842, http://dx.doi.org/10.1021/ja5044787.
DOI URL |
[4] |
J. Low, B. Cheng, J. Yu, Appl. Surf. Sci. 392 (2017) 658-686, http://dx.doi.org/10.1016/j.apsusc.2016.09.093.
DOI URL |
[5] | W. Zhang, A.R. Mohamed, W.-J. Ong, Angew. Chemie Int. Ed. (2020), http://dx.doi.org/10.1002/ange.201914925. |
[6] |
A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B Environ. 31 (2001) 145-157, http://dx.doi.org/10.1016/S0926-3373(00)00276-9.
DOI URL |
[7] | X. Wang, M. Sun, M. Murugananthan, Y. Zhang, L. Zhang, Appl. Catal. BEnviron. 260 (2020) 118205, http://dx.doi.org/10.1016/j.apcatb.2019.118205. |
[8] | X. Hu, X. Hu, Q. Peng, L. Zhou, X. Tan, L. Jiang, C. Tang, H. Wang, S. Liu, Y. Wang, Chem. Eng. J. 380 (2020) 122366, http://dx.doi.org/10.1016/j.cej.2019.122366. |
[9] |
U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170 (2009) 520-529, http://dx.doi.org/10.1016/j.jhazmat.2009.05.039.
DOI URL |
[10] |
Y. Wang, M. Craven, X. Yu, J. Ding, P. Bryant, J. Huang, X. Tu, ACS Catal. 9 (2019) 10780-10793, http://dx.doi.org/10.1021/acscatal.9b02538.
DOI URL |
[11] |
R. Shi, Y. Zhao, G.I.N. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 9 (2019) 9739-9750, http://dx.doi.org/10.1021/acscatal.9b03246.
DOI URL |
[12] |
Y. Horie, D.A. David, M. Taya, S. Tone, Ind. Eng. Chem. Res. 35 (1996) 3920-3926, http://dx.doi.org/10.1021/ie960051y.
DOI URL |
[13] |
W. Su, X. Liu, L. Tan, Z. Cui, Y. Liang, Z. Li, S. Zhu, S. Wu, ACS Sustain. Chem. Eng. 8 (2020)2577-2585, http://dx.doi.org/10.1021/acssuschemeng.9b07615.
DOI URL |
[14] |
E.E. Barton, D.M. Rampulla, A.B. Bocarsly, J. Am. Chem. Soc. 130 (2008) 6342-6344, http://dx.doi.org/10.1021/ja0776327.
DOI URL |
[15] |
M. Xie, X. Dai, S. Meng, X. Fu, S. Chen, Chem. Eng. J. 245 (2014) 107-116, http://dx.doi.org/10.1016/j.cej.2014.02.029.
DOI URL |
[16] | A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 31 (2019) 1807660, http://dx.doi.org/10.1002/adma.201807660. |
[17] | Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 31 (2019) 1806482, http://dx.doi.org/10.1002/adma.201806482. |
[18] |
H. Liu, K. Tian, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, ACS Catal. 9(2019) 1211-1219, http://dx.doi.org/10.1021/acscatal.8b03819..
DOI URL |
[19] |
T. Zhang, J. Zheng, Z. Liang, B. Zhao, H. Zeng, W. Guo, L. Zhao, Y. Sun, I. Abdulhalim, L. Jiang, Electrochim. Acta 306 (2019) 151-158, http://dx.doi.org/10.1016/j.electacta.2019.03.127.
DOI URL |
[20] | B. Gao, L. Liu, J. Liu, F. Yang, Appl. Catal. B Environ. 147 (2014) 929-939, http://dx.doi.org/10.1021/10.1016/j.apcatb.2013.09.040. |
[21] | G.R. Bamwenda, H. Arakawa, Appl. Catal. B Environ. 210 (2001) 181-191, http://dx.doi.org/10.1016/S0926-860X(00)00796-1. |
[22] |
L. Ye, Z. Wen, Int. J. Hydrogen. Energ. 44 (2019) 3751-3759, http://dx.doi.org/10.1016/j.ijhydene.2018.12.093.
DOI URL |
[23] | M. Tang, Y. Ao, P. Wang, C. Wang, J. Hazard. Mater. 387 (2020)121713, http://dx.doi.org/10.1016/j.jhazmat.2019.121713. |
[24] |
F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chemie Int. Ed. 58 (2019) 10061-10073, http://dx.doi.org/10.1002/anie.201901361.
DOI URL |
[25] | F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma, Adv. Funct. Mater. 28 (2018) 1804284, http://dx.doi.org/10.1002/adfm.201804284. |
[26] |
F. Dong, T. Xiong, S. Yan, H. Wang, Y. Sun, Y. Zhang, H. Huang, Z. Wu, J. Catal. 344 (2016) 401-410, http://dx.doi.org/10.1016/j.jcat.2016.10.005.
DOI URL |
[27] |
H. Huang, R. Cao, S. Yu, K. Xu, W. Hao, Y. Wang, F. Dong, T. Zhang, Y. Zhang, Appl. Catal. B Environ. 219 (2017) 526-537, http://dx.doi.org/10.1016/j.apcatb.2017.07.084.
DOI URL |
[28] |
H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Inter. 7 (2015) 482-492, http://dx.doi.org/10.1021/am5065409.
DOI URL |
[29] |
H. Huang, Y. He, X. Du, P.K. Chu, Y. Zhang, ACS Sustain. Chem. Eng. 3 (2015)3262-3273, http://dx.doi.org/10.1021/acssuschemeng.5b01038.
DOI URL |
[30] | H. Huang, Y. He, X. Li, M. Li, C. Zeng, F. Dong, X. Du, T. Zhang, Y. Zhang, J. Mater. Chem. A 3 (2015) 24547-24556, http://dx.doi.org/10.1039/C5TA07655B. |
[31] | H. Huang, Y. He, Z. Lin, L. Kang, Y. Zhang, J. Phys. Chem. C 117 (2013) 22986-22994, http://dx.doi.org/10.1021/jp4084184. |
[32] |
H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, ACS Catal. 5 (2015)4094-4103, http://dx.doi.org/10.1021/acscatal.5b00444.
DOI URL |
[33] | H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, J. Phys. Chem. C 118 (2014) 14379-14387, http://dx.doi.org/10.1021/jp503025b. |
[34] |
H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, Appl. Catal. B Environ. 199 (2016) 75-86, http://dx.doi.org/10.1016/j.apcatb.2016.06.020.
DOI URL |
[35] |
Z. He, S. Liu, Y. Zhong, D. Chen, H. Ding, J. Wang, G. Du, G. Yang, Q. Hao, Chin. J. Catal. 41 (2020) 302-311, http://dx.doi.org/10.1016/S1872-2067(19)63520-5.
DOI URL |
[36] | L. Lin, P. Sherrell, Y. Liu, W. Lei, S. Zhang, H. Zhang, G.G. Wallace, J. Chen, Adv. Energy Mater. (2020) 1903870, http://dx.doi.org/10.1002/aenm.201903870. |
[37] | L. Pi, L. Li, K. Liu, Q. Zhang, H. Li, T. Zhai, Adv. Funct. Mater. 29 (2019) 1904932, http://dx.doi.org/10.1002/adfm.201904932. |
[38] | Y. Pang, M. Zhang, D. Chen, W. Chen, F. Wang, S.J. Anwar, M. Saunders, M.R. Rowles, L. Liu, S. Liu, J. Phys. Chem. C 10 (2019)3465-3471, http://dx.doi.org/10.1021/acs.jpclett.9b01195. |
[39] | Y. Pang, M.N. Uddin, W. Chen, S. Javaid, E. Barker, Y. Li, A. Suvorova, M. Saunders, Z. Yin, G. Jia, Adv. Mater. 31 (2019) 1905540, http://dx.doi.org/10.1002/adma.201905540. |
[40] |
G. Jia, A. Sitt, G.B. Hitin, I. Hadar, Y. Bekenstein, Y. Amit, I. Popov, U. Banin, Nat. Mater. 13 (2014) 301-307, http://dx.doi.org/10.1038/nmat3867..
DOI URL |
[41] | G. Jia, Y. Pang, J. Ning, U. Banin, B. Ji, Adv. Mater. 31 (2019) 1900781, http://dx.doi.org/10.1002/adma.201900781. |
[42] |
G. Jia, U. Banin, J. Am. Chem. Soc. 136 (2014) 11121-11127, http://dx.doi.org/10.1021/ja505541q.
DOI URL |
[43] | L. Lin, P. Sherrell, Y. Liu, W. Lei, S. Zhang, H. Zhang, G.G. Wallace, J. Chen, Adv. Energy Mater. 10 (2020), http://dx.doi.org/10.1002/aenm.201903870. |
[44] |
J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72-123, http://dx.doi.org/10.1016/j.apsusc.2016.07.030.
DOI URL |
[45] | J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018) 1701503, http://dx.doi.org/10.1002/aenm.201701503. |
[46] | Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B.-J. Ni, Nano Res. (2020) 1-20, http://dx.doi.org/10.1007/s12274-019-2589-z. |
[47] | P. Kulkarni, S. Nataraj, R.G. Balakrishna, D. Nagaraju, M. Reddy, J. Mater. Chem. A 5 (2017) 22040-22094, http://dx.doi.org/10.1039/C7TA07329A. |
[48] |
Y. Pan, X. Yuan, L. Jiang, H. Yu, J. Zhang, H. Wang, R. Guan, G. Zeng, Chem. Eng. J. 354 (2018) 407-431, http://dx.doi.org/10.1016/j.cej.2018.08.028.
DOI URL |
[49] |
A.T. Lee, M.H. Huang, J. Chinese Chem. Soc. 67 (2019) 339-343, http://dx.doi.org/10.1002/jccs.201900371.
DOI URL |
[50] |
X. Cao, L. Gu, L. Zhuge, W. Gao, W. Wang, S. Wu, Adv. Funct. Mater. 16 (2006) 896-902, http://dx.doi.org/10.1002/adfm.200500422.
DOI URL |
[51] | D. Ren, Z. Liang, Y.H. Ng, P. Zhang, Q. Xiang, X. Li, Chem. Eng. J. 390 (2020) 124496, http://dx.doi.org/10.1016/j.cej.2020.124496. |
[52] | S. Wu, H. Pang, W. Zhou, B. Yang, X. Meng, X. Qiu, G. Chen, L. Zhang, S. Wang, X. Liu, Nanoscale (2020), http://dx.doi.org/10.1039/D0NR00483A. |
[53] | D. Wang, Y. Xu, M. Xie, Y. Song, H. Xu, H. Li, J. Xie, J. Hazard. Mater. 384 (2020) 121480, http://dx.doi.org/10.1016/j.jhazmat.2019.121480. |
[54] | S. Meng, H. Wu, Y. Cui, X. Zheng, H. Wang, S. Chen, Y. Wang, X. Fu, Appl. Catal. B Environ. (2020) 118617, http://dx.doi.org/10.1016/j.apcatb.2020.118617. |
[55] |
S. Shen, P. Guo, L. Zhao, Y. Du, L. Guo, J. Solid State Chem. 184 (2011)2250-2256, http://dx.doi.org/10.1016/j.jssc.2011.06.033.
DOI URL |
[56] |
S. Mora, C. Paorici, N. Romeo, J. Appl. Phys. 42 (1971)2061-2064, http://dx.doi.org/10.1063/1.1660487.
DOI URL |
[57] |
W. Yang, B. Liu, T. Fang, W.-A. Jennifer, L. Christophe, Z. Li, X. Zhang, X. Jiang, Nanoscale 8 (2016) 18197-18203, http://dx.doi.org/10.1039/C6NR06969J.
DOI URL |
[58] |
M. Sriram, P. McMichael, A. Waghray, P. Kumta, S. Misture, X.-L. Wang, J. Mater. Sci. 33 (1998)4333-4339, http://dx.doi.org/10.1023/A:1004424629498.
DOI URL |
[59] |
N. Romeo, A. Dallaturca, R. Braglia, G. Sberveglieri, Appl. Phys. Lett. 22(1973) 21-22.
DOI URL |
[60] |
J. Lee, H. Kim, T. Lee, W. Jang, K.H. Lee, A. Soon, Chem. Mater. 31 (2019)9148-9155, http://dx.doi.org/10.1021/acs.chemmater.9b03539.
DOI URL |
[61] | J. Wang, Y. Chen, W. Zhou, G. Tian, Y. Xiao, H. Fu, H. Fu, J. Mater. Chem. A 5 (2017) 8451-8460, http://dx.doi.org/10.1039/c7ta01914a. |
[62] | H. Qian, Z. Liu, Z. Guo, M. Ruan, J. Ma, J. Alloys. Compd. 830 (2020), http://dx.doi.org/10.1016/j.jallcom.2020.154639. |
[63] |
Y. Chen, S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, Z. Li, Dalton Trans. 40 (2011)2607-2613, http://dx.doi.org/10.1039/c0dt01435d.
DOI URL |
[64] |
X. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, Y. Xie, J. Am. Chem. Soc. 139 (2017)7586-7594, http://dx.doi.org/10.1021/jacs.7b02290.
DOI URL |
[65] |
F. Tian, R. Zhu, K. Song, M. Niu, F. Ouyang, G. Cao, Mater. Res. Bull. 70 (2015) 645-650, http://dx.doi.org/10.1016/j.materresbull.2015.05.033.
DOI URL |
[66] |
C. Li, H. Li, L. Han, C. Li, S. Zhang, Mater. Lett. 65 (2011)2537-2540, http://dx.doi.org/10.1016/j.matlet.2011.05.052.
DOI URL |
[67] |
Z. Chen, D. Li, W. Zhang, C. Chen, W. Li, M. Sun, Y. He, X. Fu, Inorg. Chem. 47 (2008)9766-9772, http://dx.doi.org/10.1021/ic800752t.
DOI URL |
[68] |
A. Hu, W. Lv, T. Lei, W. Chen, Y. Hu, C. Shu, X. Wang, L. Xue, J. Huang, X. Du, H. Wang, K. Tang, C. Gong, J. Zhu, W. He, J. Long, J. Xiong, ACS Nano. 14 (2020)3490-3499, http://dx.doi.org/10.1021/acsnano.9b09646.
DOI URL |
[69] |
Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng, L. Li, ACS Appl. Mater. Inter. 6 (2014) 17200-17207, http://dx.doi.org/10.1021/am505015j.
DOI URL |
[70] |
S. Shen, L. Zhao, L. Guo, Mater. Res. Bull. 44 (2009) 100-105, http://dx.doi.org/10.1016/j.materresbull.2008.03.027.
DOI URL |
[71] |
L. Su, X. Ye, S. Meng, X. Fu, S. Chen, Appl. Surf. Sci. 384 (2016) 161-174, http://dx.doi.org/10.1016/j.apsusc.2016.04.084.
DOI URL |
[72] |
S. Shen, L. Zhao, L. Guo, J. Phys. Chem. Solids 69 (2008)2426-2432, http://dx.doi.org/10.1016/j.jpcs.2008.04.035.
DOI URL |
[73] |
X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen, J. Am. Chem. Soc. 128 (2006)7222-7229, http://dx.doi.org/10.1021/ja0580845.
DOI URL |
[74] |
X. Tu, J. Lu, M. Li, Y. Su, G. Yin, D. He, Nanoscale 10 (2018)4735-4744, http://dx.doi.org/10.1039/c7nr09413b.
DOI URL |
[75] |
C. Liao, J. Li, Y. Zhang, Y. Qu, P. Jiang, R. Cong, T. Yang, Mater. Lett. 248 (2019) 52-54, http://dx.doi.org/10.1016/j.matlet.2019.03.144.
DOI URL |
[76] |
F. Fang, L. Chen, Y.-B. Chen, L.-M. Wu, J. Phys. Chem. C 114 (2010)2393-2397, http://dx.doi.org/10.1021/jp910291p.
DOI URL |
[77] |
M. Si, J. Zhang, Y. He, Z. Yang, X. Yan, M. Liu, S. Zhuo, S. Wang, X. Min, C. Gao, Green Chem. 20 (2018)3414-3419, http://dx.doi.org/10.1039/C8GC00744F.
DOI URL |
[78] |
Y. Xia, Q. Li, K. Lv, D. Tang, M. Li, Appl. Catal. B Environ. 206 (2017) 344-352, http://dx.doi.org/10.1016/j.apcatb.2017.01.060.
DOI URL |
[79] |
X. Hu, J.C. Yu, J. Gong, Q. Li, Cryst. Growth Des. 7 (2007)2444-2448, http://dx.doi.org/10.1021/cg060767o.
DOI URL |
[80] |
S. Shen, J. Chen, X. Wang, L. Zhao, L. Guo, J. Power Sources 196 (2011) 10112-10119, http://dx.doi.org/10.1016/j.jpowsour.2011.08.103.
DOI URL |
[81] |
Z. Chen, D. Li, G. Xiao, Y. He, Y.-J. Xu, J. Solid State Chem. 186 (2012)247-254, http://dx.doi.org/10.1016/j.jssc.2011.12.006..
DOI URL |
[82] |
J. Huang, W. Cheuk, Y. Wu, F.S. Lee, W. Ho, Catal. Sci. Technol. 2 (2012)1825-1827, http://dx.doi.org/10.1039/C2CY20053H..
DOI URL |
[83] |
M. Li, J. Su, L. Guo, Int. J. Hydrogen. Energy 33 (2008)) 2891-2896, http://dx.doi.org/10.1016/j.ijhydene.2008.04.008.
DOI URL |
[84] | H. Sampath, T.I. Jayaraj, R. Oommen, U.R. Parthasarathy, Emerg. Mater. Res. 4 (2015) 286-289, http://dx.doi.org/10.1680/jemmr.15.00023. |
[85] |
B. Kempken, V. Dzhagan, D.R. Zahn, M.J. Alcocer, I. Kriegel, F. Scotognella, J. Parisi, J. Kolny-Olesiak, RSC Adv. 5 (2015) 89577-89585, http://dx.doi.org/10.1039/C5RA20570K.
DOI URL |
[86] |
S. Peng, L. Li, Y. Wu, L. Jia, L. Tian, M. Srinivasan, S. Ramakrishna, Q. Yan, S.G. Mhaisalkar, CrystEngComm 15 (2013)1922-1930, http://dx.doi.org/10.1039/C2CE26593A.
DOI URL |
[87] |
M.V. Carević, T.D. Savić, N.D. Abazović, M.N. Mitrić, Z.A. Stojanović, S.P. Ahrenkiel, M.I. Čomor, Mater. Res. Bull. 87(2017) 140-147, http://dx.doi.org/10.1016/j.materresbull.2016.11.037.
DOI URL |
[88] |
G. Yang, H. Ding, D. Chen, J. Feng, Q. Hao, Y. Zhu, Appl. Catal. B Environ. 234 (2018) 260-267, http://dx.doi.org/10.1016/j.apcatb.2018.04.038.
DOI URL |
[89] |
G. Yang, D. Chen, H. Ding, J. Feng, J.Z. Zhang, Y. Zhu, S. Hamid, D.W. Bahnemann, Appl. Catal. B Environ. 219 (2017) 611-618, http://dx.doi.org/10.1016/j.apcatb.2017.08.016.
DOI URL |
[90] |
Y. Sun, S. Gao, F. Lei, Y. Xie, Chem. Soc. Rev. 44 (2015) 623-636, http://dx.doi.org/10.1039/C4CS00236A.
DOI URL |
[91] | X. Shi, L. Mao, P. Yang, H. Zheng, M. Fujitsuka, J. Zhang, T. Majima, Appl. Catal. B Environ. 265(2020), http://dx.doi.org/10.1016/j.apcatb.2020.118616. |
[92] |
W. Yang, L. Zhang, J. Xie, X. Zhang, Q. Liu, T. Yao, S. Wei, Q. Zhang, Y. Xie, Angew. Chemie Int. Ed. 55 (2016)6716-6720, http://dx.doi.org/10.1002/anie.201602543.
DOI URL |
[93] |
C. Du, Q. Zhang, Z. Lin, B. Yan, C. Xia, G. Yang, Appl. Catal. B Environ. 248 (2019) 193-201, http://dx.doi.org/10.1016/j.apcatb.2019.02.027.
DOI URL |
[94] |
Y. Xiao, Z. Peng, W. Zhang, Y. Jiang, L. Ni, Appl. Surf. Sci. 494 (2019) 519-531, http://dx.doi.org/10.1016/j.apsusc.2019.07.175.
DOI URL |
[95] | Y. Zhao, G. Zuo, Y. Wang, W.L. Teo, A. Xie, Y. Guo, Y. Dai, W. Zhou, D. Jana, Q. Xian, W. Dong, Angew. Chemie Int. Ed (2020), http://dx.doi.org/10.1002/anie.202002136. |
[96] |
S. Shen, L. Zhao, L. Guo, Int. J. Hydrogen. Energy 33 (2008)4501-4510, http://dx.doi.org/10.1016/j.ijhydene.2008.05.043.
DOI URL |
[97] | Y. He, H. Rao, K. Song, J. Li, Y. Yu, Y. Lou, C. Li, Y. Han, Z. Shi, S. Feng, Adv. Funct. Mater. 29 (2019), http://dx.doi.org/10.1002/adfm.201905153. |
[98] |
X. Bai, J. Li, Mater. Res. Bull. 46(2011)1028-1034, http://dx.doi.org/10.1016/j.materresbull.2011.03.012.
DOI URL |
[99] | F. Xing, Q. Liu, C. Huang, Sol. RRL (2019) 1900483, http://dx.doi.org/10.1002/solr.201900483. |
[100] |
R. Asahi, Science 293 (2001) 269-271, http://dx.doi.org/10.1126/science.1061051.
DOI URL |
[101] | C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, J. Mater. Chem. A 2 (2014) 17820-17827, http://dx.doi.org/10.1039/c4ta04254a. |
[102] |
B. Gao, L. Liu, J. Liu, F. Yang, Appl. Catal. B Environ. 129 (2013) 89-97, http://dx.doi.org/10.1016/j.apcatb.2012.09.007.
DOI URL |
[103] |
M. Wang, L. Li, J. Lu, N. Luo, X. Zhang, F. Wang, Green Chem. 19 (2017) 5172-5177, http://dx.doi.org/10.1039/C7GC01728F.
DOI URL |
[104] | P. Wang, Z. Shen, Y. Xia, H. Wang, L. Zheng, W. Xi, S. Zhan, Adv. Funct. Mater. 29 (2019) 1807013, http://dx.doi.org/10.1002/adfm.201807013. |
[105] |
S. Shen, L. Zhao, Z. Zhou, L. Guo, J. Phys. Chem. C 112 (2008) 16148-16155, http://dx.doi.org/10.1021/jp804525q.
DOI URL |
[106] | I. Tateishi, M. Furukawa, H. Katsumata, S. Kaneco, Catalysis 9 (2019), http://dx.doi.org/10.3390/catal9080681. |
[107] |
F. Tian, R. Zhu, Y. He, F. Ouyang, Int. J. Hydrogen Energy 39 (2014)6335-6344, http://dx.doi.org/10.1016/j.ijhydene.2014.01.188.
DOI URL |
[108] |
F. Tian, R. Zhu, K. Song, F. Ouyang, G. Cao, Int. J. Hydrogen Energy 40 (2015)2141-2148, http://dx.doi.org/10.1016/j.ijhydene.2014.12.025.
DOI URL |
[109] |
C. Tan, G. Zhu, M. Hojamberdiev, K.S. Lokesh, X. Luo, L. Jin, J. Zhou, P. Liu, J. Hazard. Mater. 278 (2014) 572-583, http://dx.doi.org/10.1016/j.jhazmat.2014.06.019.
DOI URL |
[110] |
S. Shen, L. Zhao, X. Guan, L. Guo, J. Phys. Chem. Solids 73 (2012) 79-83, http://dx.doi.org/10.1016/j.jpcs.2011.09.027.
DOI URL |
[111] |
C. Du, B. Yan, Z. Lin, G. Yang, J. Mater. Chem. A 8 (2020) 207-217, http://dx.doi.org/10.1039/C9TA11318E.
DOI URL |
[112] |
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5 (2013) 263-275, http://dx.doi.org/10.1038/nchem.1589.
DOI URL PMID |
[113] | Y. Wang, D. Chen, L. Qin, J. Liang, Y. Huang, Phys. Chem. Chem. Phys. 21 (2019) 25484-25494, http://dx.doi.org/10.1039/C9CP04709C. |
[114] |
S. Zhang, X. Liu, C. Liu, S. Luo, L. Wang, T. Cai, Y. Zeng, J. Yuan, W. Dong, Y. Pei, Y. Liu, ACS Nano 12 (2018) 751-758, http://dx.doi.org/10.1021/acsnano.7b07974.
DOI URL |
[115] | J. Di, J. Xiong, H. Li, Z. Liu, Adv. Mater. 30 (2018), http://dx.doi.org/10.1002/adma.201704548. |
[116] |
H. Matsuoka, M. Higashi, A. Nakada, O. Tomita, R. Abe, Chem. Lett. 47 (2018) 941-944, http://dx.doi.org/10.1246/cl.180369.
DOI URL |
[117] |
B. Gao, Z. Safaei, I. Babu, S. Iftekhar, E. Iakovleva, V. Srivastava, B. Doshi, S.B. Hammouda, S. Kalliola, M. Sillanpää, J. Photochem. Photobiol. A: Chem. 348 (2017) 150-160, http://dx.doi.org/10.1016/j.jphotochem.2017.08.037.
DOI URL |
[118] |
Y. Li, K. Zhang, S. Peng, G. Lu, S. Li, J. Mol. Catal. A Chem. 363-364 (2012) 354-361, http://dx.doi.org/10.1016/j.molcata.2012.07.011.
DOI URL |
[119] |
T.N. Chen, J.C. Kao, X.Y. Zhong, S.J. Chan, A.S. Patra, Y.C. Lo, M.H. Huang, ACS Cent. Sci. 6 (2020) 984-994, http://dx.doi.org/10.1021/acscentsci.0c00367.
DOI URL |
[120] |
Y. Zhu, L. Wang, Y. Liu, L. Shao, X. Xia, Appl. Catal. B Environ. 241 (2019) 483-490, http://dx.doi.org/10.1016/j.apcatb.2018.09.062.
DOI URL |
[121] |
W. Zhou, W. Li, J.-Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, J. Am. Chem. Soc. 136(2014)9280-9283, http://dx.doi.org/10.1021/ja504802q.
DOI URL |
[122] | Y. Xu, C. Zhang, L. Zhang, X. Zhang, H. Yao, J. Shi, Energ.Environ. Sci. 9 (2016)2410-2417, http://dx.doi.org/10.1039/C6EE00830E. |
[123] | X. Xuan, S. Tu, H. Yu, X. Du, Y. Zhao, J. He, H. Dong, X. Zhang, H. Huang, Appl. Catal. B Environ. 255 (2019) 117768, . |
[124] |
N.A. Deskins, R. Rousseau, M. Dupuis, J. Phys. Chem. C. 114 (2010)5891-5897, .
DOI URL |
[125] |
T. Zhu, X. Ye, Q. Zhang, Z. Hui, X. Wang, S. Chen, J. Hazard. Mater. 367 (2019) 277-285, http://dx.doi.org/10.1016/j.jhazmat.2018.12.093.
DOI URL |
[126] |
B. Wang, Z. Deng, X. Fu, C. Xu, Z. Li, Appl. Catal. B Environ. 237 (2018) 970-975, http://dx.doi.org/10.1016/j.apcatb.2018.06.067.
DOI URL |
[127] | C. Feng, X. Yang, Z. Sun, J. Xue, L. Sun, J. Wang, Z. He, J. Yu, Appl. Surf. Sci. 501 (2020) 91449018, http://dx.doi.org/10.1016/j.apsusc.2019.144018. |
[128] |
M. Hao, X. Deng, L. Xu, Z. Li, Appl. Catal. B Environ. 252 (2019) 18-23, http://dx.doi.org/10.1016/j.apcatb.2019.04.002.
DOI URL |
[129] |
G. Chen, N. Ding, F. Li, Y. Fan, Y. Luo, D. Li, Q. Meng, Appl. Catal. B Environ. 160-161 (2014) 614-620, http://dx.doi.org/10.1016/j.apcatb.2014.05.028.
DOI URL |
[130] |
G. Swain, S. Sultana, K. Parida, Inorg. Chem. 58 (2019)9941-9955, http://dx.doi.org/10.1021/acs.inorgchem.9b01105.
DOI URL |
[131] |
A. Yan, X. Shi, F. Huang, M. Fujitsuka, T. Majima, Appl. Catal. B Environ. 250 (2019) 163-170, http://dx.doi.org/10.1016/j.apcatb.2019.02.075.
DOI URL |
[132] |
L. Wei, Y. Chen, J. Zhao, Z. Li, Beilstein. J. Nanotech. 4 (2013) 949-955, http://dx.doi.org/10.3762/bjnano.4.107.
DOI URL |
[133] |
B. Wang, Y. Ding, Z. Deng, Z. Li, Chin. J. Catal. 40 (2019) 335-342, http://dx.doi.org/10.1016/s1872-2067(18)63159-6.
DOI URL |
[134] |
Z. Mei, S. Ouyang, D.M. Tang, T. Kako, D. Golberg, J. Ye, Dalton Trans. 42 (2013)2687-2690, http://dx.doi.org/10.1039/c2dt32271d.
DOI URL |
[135] | Q. Zhang, J. Zhang, L. Zhang, F. Yang, L. Li, W.-L. Dai, Catal. Sci. Technol. (2020). |
[136] | G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Angew. Chemie Int. Ed. (2020), http://dx.doi.org/10.1002/anie.202000503. |
[137] |
J. Zhou, G. Tian, Y. Chen, X. Meng, Y. Shi, X. Cao, K. Pan, H. Fu, Chem. Commun. 49 (2013)2237-2239, http://dx.doi.org/10.1039/c3cc38999e.
DOI URL |
[138] |
R. Yang, K. Song, J. He, Y. Fan, R. Zhu, ACS Omega 4 (2019) 11135-11140, http://dx.doi.org/10.1021/10.1021/acsomega.9b01034.
DOI URL |
[139] |
L. Ye, J. Fu, Z. Xu, R. Yuan, Z. Li, ACS Appl. Mater. Inter. 6 (2014)3483-3490, http://dx.doi.org/10.1021/am5004415.
DOI URL |
[140] |
B. Liu, X. Liu, L. Li, J. Li, C. Li, Y. Gong, L. Niu, X. Zhao, C.Q. Sun, Chin. J. Catal. 39 (2018)1901-1909, http://dx.doi.org/10.1016/S1872-2067(18)63137-7.
DOI URL |
[141] |
B. Chai, T. Peng, P. Zeng, X. Zhang, Dalton Trans. 41 (2012)1179-1186, http://dx.doi.org/10.1039/c1dt11308a.
DOI URL PMID |
[142] |
Y. Chen, G. Tian, Z. Ren, K. Pan, Y. Shi, J. Wang, H. Fu, ACS Appl. Mater. Inter. 6 (2014) 13841-13849, http://dx.doi.org/10.1021/am5032083.
DOI URL |
[143] | Q. Zhu, Y. Sun, S. Xu, Y. Li, X. Lin, Y. Qin, J. Hazard. Mater. 382 (2020) 121098, http://dx.doi.org/10.1016/j.jhazmat.2019.121098. |
[144] |
M. Li, B. Hua, J. Chen, Y. Zhong, J.-L. Luo, Nano Energy 57 (2019) 186-194, http://dx.doi.org/10.1016/j.nanoen.2018.12.048.
DOI URL |
[145] |
Z. Pan, S. Wang, P. Niu, M. Liu, X. Wang, J. Catal. 379 (2019) 129-137, http://dx.doi.org/10.1016/j.jcat.2019.09.016.
DOI URL |
[146] | F. Raziq, L. Sun, Y. Wang, X. Zhang, M. Humayun, S. Ali, L. Bai, Y. Qu, H. Yu, L. Jing, Adv. Energy Mater. 8 (2018), http://dx.doi.org/10.1002/aenm.201701580. |
[147] |
S. Chen, S. Shen, G. Liu, Y. Qi, F. Zhang, C. Li, Angew. Chemie Int. Ed. 54 (2015)3047-3051, http://dx.doi.org/10.1002/anie.201409906.
DOI URL |
[148] |
D.H. Murthy, H. Matsuzaki, Q. Wang, Y. Suzuki, K. Seki, T. Hisatomi, T. Yamada, A. Kudo, K. Domen, A. Furube, Sustain. Energy Fuels 3 (2019) 208-218, http://dx.doi.org/10.1039/C8SE00487K.
DOI URL |
[149] |
M. Zhou, Z. Liu, Q. Song, X. Li, B. Chen, Z. Liu, Appl. Catal. B Environ. 244 (2019) 188-196, http://dx.doi.org/10.1016/j.apcatb.2018.11.031.
DOI URL |
[150] |
Y. Fan, R. Yang, J. Zhong, R. Zhu, ChemistrySelect 4 (2019)8815-8821, http://dx.doi.org/10.1002/slct.201902169.
DOI URL |
[151] | M.H. Huang, M. Madasu, Nano Today 28 (2019), http://dx.doi.org/10.1016/j.nantod.2019.100768. |
[152] | X. Pan, C. Shang, Z. Chen, M. Jin, Y. Zhang, Z. Zhang, X. Wang, G. Zhou, Nanomaterials Basel 9 (2019), http://dx.doi.org/10.3390/nano9091266. |
[153] |
Y. Yu, G. Chen, G. Wang, Z. Lv, Int. J. Hydrogen Energy 38 (2013)1278-1285, http://dx.doi.org/10.1016/j.ijhydene.2012.11.020.
DOI URL |
[154] |
Z. Guan, Z. Xu, Q. Li, P. Wang, G. Li, J. Yang, Appl. Catal. B Environ. 227 (2018) 512-518, http://dx.doi.org/10.1016/j.apcatb.2018.01.068.
DOI URL |
[155] | L. Guo, X. Han, K. Zhang, Y. Zhang, Q. Zhao, D. Wang, F. Fu, Catalysis 9 (2019) 729, http://dx.doi.org/10.3390/catal9090729. |
[156] |
R. Jiang, D. Wu, G. Lu, Z. Yan, J. Liu, Chemosphere 227 (2019) 82-92, http://dx.doi.org/10.1016/j.chemosphere.2019.04.038.
DOI URL |
[157] |
B. Lin, H. Li, H. An, W. Hao, J. Wei, Y. Dai, C. Ma, G. Yang, Appl. Catal. B Environ. 220 (2018) 542-552, http://dx.doi.org/10.1016/j.apcatb.2017.08.071.
DOI URL |
[158] | L. Gallos, A. Anagnostopoulos, P. Argyrakis, Phys. Rev. B 50 (1994) 14643, http://dx.doi.org/10.1103/PhysRevB.50.14643. |
[159] |
A. Anagnostopoulos, C. Manolikas, D. Papadopoulos, J. Spyridelis, Physica Status Solidi A 72 (1982) 731-736.
DOI URL |
[160] |
Y. Li, Y. Hou, Q. Fu, S. Peng, Y.H. Hu, Appl. Catal. B Environ. 206 (2017) 726-733, http://dx.doi.org/10.1016/j.apcatb.2017.01.062.
DOI URL |
[161] | J. Qiu, M. Li, L. Yang, J. Yao, Chem. Eng. J. 375 (2019), http://dx.doi.org/10.1016/j.cej.2019.121990. |
[162] |
H. Liu, J. Zhang, D. Ao, Appl. Catal. B Environ. 221 (2018) 433-442, http://dx.doi.org/10.1016/j.apcatb.2017.09.043.
DOI URL |
[163] | X. Peng, L. Ye, Y. Ding, L. Yi, C. Zhang, Z. Wen, Appl. Catal. B Environ. 260 (2020), http://dx.doi.org/10.1016/j.apcatb.2019.118152. |
[164] | F. Mu, Q. Cai, H. Hu, J. Wang, Y. Wang, S. Zhou, Y. Kong, Chem. Eng. J. 384 (2020), http://dx.doi.org/10.1016/j.cej.2019.123352. |
[165] | F. Dai, Y. Wang, X. Zhou, R. Zhao, J. Han, L. Wang, Appl. Surf. Sci. (2020) 146161, http://dx.doi.org/10.1016/j.apsusc.2020.146161. |
[166] |
S. Wang, B.Y. Guan, X. Wang, X.W.D. Lou, J. Am. Chem. Soc. 140 (2018) 15145-15148, http://dx.doi.org/10.1021/jacs.8b07721.
DOI URL |
[167] |
J. Wang, S. Sun, H. Ding, W. Li, X. Wang, Ind. Eng. Chem. Res. 59 (2020)7659-7669, http://dx.doi.org/10.1021/acs.iecr.0c01089.
DOI URL |
[168] |
W. Jiang, X. Zong, L. An, S. Hua, X. Miao, S. Luan, Y. Wen, F.F. Tao, Z. Sun, ACS Catal. 8 (2018)2209-2217, http://dx.doi.org/10.1021/acscatal.7b04323.
DOI URL |
[169] |
Y. Nosaka, A.Y. Nosaka, Chem. Rev. 117 (2017) 11302-11336, http://dx.doi.org/10.1021/acs.chemrev.7b00161.
DOI URL |
[170] | T. Liu, L. Wang, X. Liu, C. Sun, Y. Lv, R. Miao, X. Wang, Chem. Eng. J. 379 (2020), http://dx.doi.org/10.1016/j.cej.2019.122379. |
[171] |
A. Khan, M. Danish, U. Alam, S. Zafar, M. Muneer, ACS Omega 5 (2020)8188-8199, http://dx.doi.org/10.1021/acsomega.0c00446.
DOI URL |
[172] |
A.A. Khan, A. Chowdhury, S. Kumari, S. Hussain, J. Mater. Chem. A 8 (2020)1986-2000, http://dx.doi.org/10.1039/c9ta11800d.
DOI URL |
[173] | N. Wei, Y. Wu, M. Wang, W. Sun, Z. Li, L. Ding, H. Cui, Nanotechnology 30 (2019) 045701, http://dx.doi.org/10.1088/1361-6528/aaecc6. |
[174] |
S. Manchala, V. Tandava, L.R. Nagappagari, S. Muthukonda Venkatakrishnan, D. Jampaiah, Y.M. Sabri, S.K. Bhargava, V. Shanker, Photochem. Photobiol. Sci. 18 (2019)2952-2964, http://dx.doi.org/10.1039/c9pp00234k.
DOI URL |
[175] |
Y. Li, J. Wang, S. Peng, G. Lu, S. Li, Int. J. Hydrogen Energy 35 (2010)7116-7126, http://dx.doi.org/10.1016/j.ijhydene.2010.02.017.
DOI URL |
[176] | Q. Lin, Y.-H. Li, M.-Y. Qi, J.-Y. Li, Z.-R. Tang, M. Anpo, Y.M. Yamada, Y.-J. Xu, Appl. Catal. B Environ. (2020) 118946, http://dx.doi.org/10.1016/j.apcatb.2020.118946. |
[177] | Z. Gao, K. Chen, L. Wang, B. Bai, H. Liu, Q. Wang, Appl. Catal. B Environ. 268 (2020), http://dx.doi.org/10.1016/j.apcatb.2019.118462. |
[178] |
M. Wang, S. Huang, X. Pang, M. Song, C. Du, Y. Su, Sustain. Energy Fuels 3 (2019)3422-3429, http://dx.doi.org/10.1039/c9se00639g.
DOI URL |
[179] | A. Gunjal, A.K. Kulkarni, U.V. Kawade, Y.A. Sethi, R. Sonawane, J.-O. BAEG, A. Nagawade, B.B. Kale, Nanoscale Adv. (2020), http://dx.doi.org/10.1021/10.1039/D0NA00175A. |
[180] | N.S. Chaudhari, A.P. Bhirud, R.S. Sonawane, L.K. Nikam, S.S. Warule, V.H. Rane, B.B. Kale, Green Chem. 13 (2011), http://dx.doi.org/10.1039/C1GC15515F. |
[181] |
S.B. Kale, R.S. Kalubarme, M.A. Mahadadalkar, H.S. Jadhav, A.P. Bhirud, J.D. Ambekar, C.J. Park, B.B. Kale, Phys. Chem. Chem. Phys. 17 (2015) 31850-31861, http://dx.doi.org/10.1039/c5cp05546f.
DOI URL |
[182] |
M. Reza Gholipour, C.T. Dinh, F. Beland, T.O. Do, Nanoscale 7 (2015)8187-8208, http://dx.doi.org/10.1039/c4nr07224c.
DOI URL PMID |
[183] | Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun. (2003)2142-2143, http://dx.doi.org/10.1039/b306813g. |
[184] |
J. Luo, S. Zhang, M. Sun, L. Yang, S. Luo, J.C. Crittenden, ACS Nano 13 (2019)9811-9840, http://dx.doi.org/10.1021/acsnano.9b03649.
DOI URL |
[185] |
A. Banerjee, B.D. Yuhas, E.A. Margulies, Y. Zhang, Y. Shim, M.R. Wasielewski, M.G. Kanatzidis, J. Am. Chem. Soc. 137 (2015)2030-2034, http://dx.doi.org/10.1021/ja512491v.
DOI URL |
[186] | S. Chen, X. Zhao, F. Xie, X. Wang, Z. Tang, New J. Chem. (2020). |
[187] |
Z. Chen, Y. Wu, J. Xu, F. Wang, J. Wang, J. Zhang, Z. Ren, Y. He, G. Xiao, J. Mol. Catal. A Chem. 401 (2015) 66-72, http://dx.doi.org/10.1016/j.molcata.2015.02.020.
DOI URL |
[188] | M. Zhang, J. Yao, M. Arif, B. Qiu, H. Yin, X. Liu, Appl. Surf. Sci. (2020) https://10.1016/j.apsusc.2020.145749. |
[189] |
Q. Li, Y. Xia, C. Yang, K. Lv, M. Lei, M. Li, Chem. Eng. J. 349 (2018) 287-296, http://dx.doi.org/10.1016/j.cej.2018.05.094.
DOI URL |
[190] | H. Zhao, T. Zhang, D. Shan, Y. Zhu, G. Gao, Y. Liu, J. Liu, M. Liu, W. You, Int. J. Hydrogen Energy 45 (2020) 13975-13984, http://dx.doi.org/10.1016/j.ijhydene.2020.03.104. |
[191] |
D. Yuan, M. Sun, S. Tang, Y. Zhang, Z. Wang, J. Qi, Y. Rao, Q. Zhang, Chin. Chem. Lett. 31 (2020) 547-550, http://dx.doi.org/10.1016/j.cclet.2019.09.051.
DOI URL |
[192] |
T. Yu, W. Wu, L. Liu, C. Gao, T. Yang, Ceram. Int. 46 (2020)9567-9574, http://dx.doi.org/10.1016/j.ceramint.2019.12.221.
DOI URL |
[193] |
L. Wang, H. Zhou, H. Zhang, Y. Song, H. Zhang, X. Qian, Inorg. Chem. 59 (2020)2278-2287, http://dx.doi.org/10.1021/acs.inorgchem.9b03007.
DOI URL PMID |
[194] | J. Qiu, M. Li, J. Xu, X.F. Zhang, J. Yao, J. Hazard. Mater. 389 (2020) 121858, http://dx.doi.org/10.1016/j.jhazmat.2019.121858. |
[195] |
W. Pudkon, H. Bahruji, P.J. Miedziak, T.E. Davies, D.J. Morgan, S. Pattisson, S. Kaowphong, G.J. Hutchings, Catal. Sci. Technol. 10 (2020)2838-2854, http://dx.doi.org/10.1039/d0cy00234h.
DOI URL |
[196] |
J. Pan, Z. Guan, J. Yang, Q. Li, Chin. J. Catal. 41 (2020) 200-208, http://dx.doi.org/10.1016/s1872-2067(19)63422-4.
DOI URL |
[197] | Q. Liang, W. Gao, C. Liu, S. Xu, Z. Li, J. Hazard. Mater. 392 (2020) 122500, http://dx.doi.org/10.1016/j.jhazmat.2020.122500. |
[198] | C. Cheng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, J. Hazard. Mater. 391 (2020) 122205, http://dx.doi.org/10.1016/j.jhazmat.2020.122205. |
[199] | W. Chen, L. Chang, S.B. Ren, Z.C. He, G.B. Huang, X.H. Liu, J. Hazard. Mater. 384 (2020) 121308, http://dx.doi.org/10.1016/j.jhazmat.2019.121308. |
[200] |
H. Xu, Y. Jiang, X. Yang, F. Li, A. Li, Y. Liu, J. Zhang, Z. Zhou, L. Ni, Mater. Res. Bull. 97 (2018) 158-168, http://dx.doi.org/10.1016/j.materresbull.2017.09.004.
DOI URL |
[201] | Q. Zhang, J. Zhang, L. Zhang, M. Cao, F. Yang, W.-L. Dai, Appl. Surf. Sci. 504 (2020), http://dx.doi.org/10.1016/j.apsusc.2019.144366. |
[202] | L. Ye, Z. Wen, Z. Li, H. Huang, Sol. RRL (2020), http://dx.doi.org/10.1002/solr.202000027. |
[203] | M. Xiong, B. Chai, J. Yan, G. Fan, G. Song, Appl. Surf. Sci. (2020) 145965, http://dx.doi.org/10.1016/j.apsusc.2020.145965. |
[204] | S. Wang, Y. Wang, S.L. Zhang, S.Q. Zang, X.W. Lou, Adv. Mater. 31 (2019) 1903404, http://dx.doi.org/10.1002/adma.201903404. |
[205] | I. Tateishi, M. Furukawa, H. Katsumata, S. Kaneco, ChemEngineering 3 (2019), http://dx.doi.org/10.3390/chemengineering3040079. |
[206] |
J. Jiang, Q. Zhu, Y. Guo, L. Cheng, Y. Lou, J. Chen, B. Chem. Soc. Jpn. 92 (2019)1047-1052, http://dx.doi.org/10.1246/bcsj.20190014.
DOI URL |
[207] |
H. An, H. Wang, J. Huang, M. Li, W. Wang, Z. Yin, Appl. Surf. Sci. 484 (2019)1168-1175, http://dx.doi.org/10.1016/j.apsusc.2019.04.180.
DOI URL |
[208] |
H. An, M. Li, W. Wang, Z. Lv, C. Deng, J. Huang, Z. Yin, Ceram. Int. 45 (2019) 14976-14982, http://dx.doi.org/10.1016/j.ceramint.2019.04.234.
DOI URL |
[209] | R.M. Mohamed, A. Shawky, M.S. Aljahdali, J. Taiwan, Process Saf. Environ. Prot. 65 (2016) 498-504, http://dx.doi.org/10.1016/j.jtice.2016.05.027. |
[210] |
S. Wang, B.Y. Guan, X.W.D. Lou, J. Am. Chem. Soc. 140 (2018)5037-5040, http://dx.doi.org/10.1021/jacs.8b02200.
DOI URL |
[211] | M. Zhou, S. Wang, P. Yang, Z. Luo, R. Yuan, A.M. Asiri, M. Wakeel, X. Wang, Chemistry 24 (2018) 18529-18534, http://dx.doi.org/10.1002/chem.201803250. |
[212] |
T. Hou, N. Luo, Y.-T. Cui, J. Lu, L. Li, K.E. MacArthur, M. Heggen, R. Chen, F. Fan, W. Tian, S. Jin, F. Wang, Appl. Catal. B Environ. 245 (2019) 262-270, http://dx.doi.org/10.1016/j.apcatb.2018.12.059.
DOI URL |
[213] |
K. Zhu, J. Ou-Yang, Q. Zeng, S. Meng, W. Teng, Y. Song, S. Tang, Y. Cui, Chin. J. Catal. 41 (2020) 454-463, http://dx.doi.org/10.1016/S1872-2067(19)63494-7.
DOI URL |
[1] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[2] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[3] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
[4] | Jinpeng Li, Huarui Zhang, Ming Gao, Qingling Li, Weidong Bian, Yongshuang Cui, Tongxiang Tao, Hu Zhang. Mechanisms of yttrium on the wettability, surface tension and interactions between Ni-20Co-20Cr-10Al-ξY alloys and MgO ceramics [J]. J. Mater. Sci. Technol., 2021, 70(0): 39-48. |
[5] | E. Burzo, P. Vlaic, D.P. Kozlenko, N.O. Golosova, S.E. Kichanov, B.N. Savenko, A. Ostlin, L. Chioncel. Structure and magnetic properties of YCo5 compound at high pressures [J]. J. Mater. Sci. Technol., 2020, 42(0): 106-112. |
[6] | Zheng Liu, Jieqiong Wang, Changhong Zhan, Jing Yu, Yang Cao, Jinchun Tu, Changsheng Shi. Phosphide-oxide honeycomb-like heterostructure CoP@CoMoO4/CC for enhanced hydrogen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2020, 46(0): 177-184. |
[7] | Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin [J]. J. Mater. Sci. Technol., 2020, 40(0): 24-30. |
[8] | Guoquan Suo, Dan Li, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Qiyao Yu, Yanling Yang, Wei (Alex) Wang. Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 167-172. |
[9] | Yingzhi Chen, Dongjian Jiang, Zhengqi Gong, Qinglin Li, Ranran Shi, Zexi Yang, Ziyi Lei, Jingyuan Li, Lu-Ning Wang. Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation [J]. J. Mater. Sci. Technol., 2020, 38(0): 93-106. |
[10] | O. Kapitanova Olesya, V. Emelin Evgeny, G. Dorofeev Sergey, V. Evdokimov Pavel, N. Panin Gennady, Lee Youngmin, Lee Sejoon. Direct patterning of reduced graphene oxide/graphene oxide memristive heterostructures by electron-beam irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 237-243. |
[11] | Yiming Xiang, Qilin Zhou, Zhaoyang Li, Zhenduo Cui, Xiangmei Liu, Yanqin Liang, Shengli Zhu, Yufeng Zheng, Kelvin Wai Kwok Yeung, Shuilin Wu. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing [J]. J. Mater. Sci. Technol., 2020, 57(0): 1-11. |
[12] | Huaqiang Zhuang, Wentao Xu, Liqin Lin, Mianli Huang, Miaoqiong Xu, Shaoyun Chen, Zhenping Cai. Construction of one dimensional ZnWO4@SnWO4 core-shell heterostructure for boosted photocatalytic performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2312-2318. |
[13] | Jia Hui,Wang Rong,Ni Zhenyi,Liu Yong,Pi Xiaodong,Yang Deren. Formation, Stability, Geometry and Band Structure of Organically Surface-Modified Germanane [J]. J. Mater. Sci. Technol., 2017, 33(1): 59-64. |
[14] | Ruiheng Liu, Jung Young Cho, Jiong Yang, Wenqing Zhang, Lidong Chen. Thermoelectric Transport Properties of RyFe3NiSb12 (R = Ba,Nd and Yb) [J]. J. Mater. Sci. Technol., 2014, 30(11): 1134-1140. |
[15] | Jingwei Guo, Hui Huang, Xiaomin Ren, Xin Yan, Shiwei Cai, Wei Wang, Yongqing Huang, Qi Wang, Xia Zhang. Realizing Zinc Blende GaAs/AlGaAs Axial and Radial Heterostructure Nanowires by Tuning the Growth Temperature [J]. J Mater Sci Technol, 2011, 27(6): 507-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||