J. Mater. Sci. Technol. ›› 2021, Vol. 76: 86-94.DOI: 10.1016/j.jmst.2020.10.033
• Research Article • Previous Articles Next Articles
Yuchao Lyua,b, Weilong Zhana, Zhumo Yua, Xinmei Liua,*(), a, Xiaoxing Wangb, Chunshan Songb, Zifeng Yana
Received:
2020-07-06
Revised:
2020-08-03
Accepted:
2020-08-14
Published:
2021-06-20
Online:
2020-10-29
Contact:
Xinmei Liu
About author:
*E-mail address: lxmei@upc.edu.cn (X. Liu).Yuchao Lyu, Weilong Zhan, Zhumo Yu, Xinmei Liu, , Xiaoxing Wang, Chunshan Song, Zifeng Yan. One-pot synthesis of the highly efficient bifunctional Ni-SAPO-11 catalyst[J]. J. Mater. Sci. Technol., 2021, 76: 86-94.
Fig. 1. (a) n-C6 Conversion and (b) i-C6 yield as a function of reaction temperatures, (c) selectivity to i-C6 against n-C6 conversion at 2.0 MPa, H2/n-C6 = 4.0 and WHSV =1.0 h-1; (d) The catalytic performance of the catalysts at 613 K, 2.0 MPa, H2/n-C6 = 4.0 and WHSV =1.0 h-1.
Sample | SBET (m2/g) | VTotal (cm3/g) | VMeso (cm3/g) | Va (Å3) |
---|---|---|---|---|
SAC-11 | 236 | 0.141 | 0.068 | 2034 |
Ni-SAC-11 | 305 | 0.231 | 0.166 | 2050 |
Ni/SAC-11 | 167 | 0.108 | 0.058 | - |
Table 1 Textural properties of the SAC-11, Ni-SAC -11 and Ni/SAC-11 samples.
Sample | SBET (m2/g) | VTotal (cm3/g) | VMeso (cm3/g) | Va (Å3) |
---|---|---|---|---|
SAC-11 | 236 | 0.141 | 0.068 | 2034 |
Ni-SAC-11 | 305 | 0.231 | 0.166 | 2050 |
Ni/SAC-11 | 167 | 0.108 | 0.058 | - |
Sample | Acidity (μmol/g) | |||
---|---|---|---|---|
Weak | Medium | Strong | Total | |
SAC-11 | 78.4 | 95.4 | 104.9 | 278.7 |
Ni-SAC-11 | 92.3 | 167.7 | 143.7 | 403.7 |
Ni/SAC-11 | 46.3 | 77.4 | 99.5 | 223.2 |
Table 2 Acid distribution of the SAC-11, reduced Ni-SAC-11 and Ni/SAC-11 samples.
Sample | Acidity (μmol/g) | |||
---|---|---|---|---|
Weak | Medium | Strong | Total | |
SAC-11 | 78.4 | 95.4 | 104.9 | 278.7 |
Ni-SAC-11 | 92.3 | 167.7 | 143.7 | 403.7 |
Ni/SAC-11 | 46.3 | 77.4 | 99.5 | 223.2 |
Fig. 12. 3D structures showing the optimized cluster of the SAPO-11 (a), SAPO-11 interacting with NH3 (b), NiP-OH clusters in the Ni-SAPO-11 (c) and NiP-OH clusters interacting with NH3 (d).
Fig. 13. Specific chemical bond angles of T-O-T (T = Al, P, Si or Ni) in the 10-membered ring pore channel of AlPO-11 (a), SAPO-11 (SAC-11, b) and nickel substituted SAPO-11 (Ni-SAC-11, c).
Structures | dO-H (Å) | qO | ΔEads (kJ/mol) | DPE (kJ/mol) |
---|---|---|---|---|
SiAl-OHa | 0.965 | -0.646 | -70.3 | 1260.4 |
NiP-OHb | 0.993 | -0.303 | -80.4 | 1188.8 |
Table 3 The selected bond length (dO-H), Mulliken charge (qO), the NH3 adsorption energy (ΔEads) and deprotonation energy (DPE) of the bridging O-H groups from SiAl-OH and NiP-OH structures.
Structures | dO-H (Å) | qO | ΔEads (kJ/mol) | DPE (kJ/mol) |
---|---|---|---|---|
SiAl-OHa | 0.965 | -0.646 | -70.3 | 1260.4 |
NiP-OHb | 0.993 | -0.303 | -80.4 | 1188.8 |
[1] |
G. Ye, Y. Sun, Z. Guo, K. Zhu, H. Liu, X. Zhou, M.O. Coppens, J. Catal., 360 (2018), pp. 152-159
DOI URL |
[2] |
T. Li, W. Wang, Z. Feng, X. Bai, X. Su, L. Yang, G. Jia, C. Guo, W. Wu, Fuel, 272 (2020), p. 117717
DOI URL |
[3] |
L.C. Gomes, D. de Oliveira Rosas, R.C. Chistone, F.M.Z. Zotin, L.R.R. de Araujo, J.L. Zotin, Fuel, 209 (2017), pp. 521-528
DOI URL |
[4] |
N.V. Chekantsev, M.S. Gyngazova, E.D. Ivanchina, Chem. Eng. J., 238 (2014), pp. 120-128
DOI URL |
[5] |
H. Song, N. Wang, H. Song, F. Li, Res. Chem. Int., 42 (2016), pp. 951-962
DOI URL |
[6] |
Z. Yang, J. Li, Y. Liu, C. Liu, J. Energy Chem., 26 (2017), pp. 688-694
DOI URL |
[7] |
V.P. Ananikov, ACS Catal., 5 (2015), pp. 1964-1971
DOI URL |
[8] |
J. Kim, S.W. Han, J.C. Kim, R. Ryoo, ACS Catal., 8 (2018), pp. 10545-10554
DOI URL |
[9] |
Y. Lyu, Y. Liu, L. Xu, X. Zhao, Z. Liu, X. Liu, Z. Yan, Appl. Surf. Sci., 401 (2017), pp. 57-64
DOI URL |
[10] |
S. Vajda, M.G. White, ACS Catal., 5 (2015), pp. 7152-7176
DOI URL |
[11] |
S. Petr, S. Zdenek, D. Jiri, J. Ivo, P. Vasile, B. Zdenek, R. Jiri, J. Hana, Angew. Chem. Int. Ed., 52 (2013), pp. 2038-2041
DOI URL |
[12] |
N. Musselwhite, K. Na, K. Sabyrov, S. Aayogu, G.A. Somorjai, J. Am. Chem. Soci., 137 (2015), pp. 10231-10237
DOI URL |
[13] |
P. Liu, J. Ren, Y. Sun, Catal. Commun., 9 (2008), pp. 1804-1809
DOI URL |
[14] |
F. Alvarez, F.R. Ribeiro, G. Perot, C. Thomazeau, M. Guisnet, J. Catal., 162 (1996), pp. 179-189
DOI URL |
[15] |
Y. Wang, Z. Tao, B. Wu, J. Xu, C. Huo, K. Li, H. Chen, Y. Yang, Y. Li, J. Catal., 322 (2015), pp. 1-13
DOI URL |
[16] |
M. Tao, X. Meng, Y. Lv, Z. Bian, Z. Xin, Fuel, 165 (2016), pp. 289-297
DOI URL |
[17] |
D. Liu, X.Y. Quek, W.N.E. Cheo, R. Lau, A. Borgna, Y. Yang, J. Catal., 266 (2009), pp. 380-390
DOI URL |
[18] |
G. Wang, H. Wang, H. Zhang, Q. Zhu, C. Li, H. Shan, ChemCatChem, 8 (2016), pp. 3137-3145
DOI URL |
[19] |
M.A. Goula, N.D. Charisiou, K.N. Papageridis, A. Delimitis, E. Pachatouridou, E.F. Iliopoulou, Inter. J. Hydrogen Energy, 40 (2015), pp. 9183-9200
DOI URL |
[20] |
J.L. Ewbank, L. Kovarik, F.Z. Diallo, C. Sievers, Appl. Catal. A-Gen., 494 (2015), pp. 57-67
DOI URL |
[21] |
T. Xie, L. Shi, J. Zhang, D. Zhang, Chem. Commun., 50 (2014), pp. 7250-7253
DOI URL |
[22] |
M.A. Lucchini, A. Testino, A. Kambolis, C. Proff, C. Ludwig, Appl. Catal. B-Environ., 182 (2016), pp. 94-101
DOI URL |
[23] |
E. Baktash, P. Littlewood, R. Schomäcker, A. Thomas, P.C. Stair, Appl. Catal. B-Environ., 179 (2015), pp. 122-127
DOI URL |
[24] |
M. Salmasi, S. Fatemi, S.J. Hashemi, Sci. Iran., 19 (2012), pp. 1632-1637
DOI URL |
[25] |
P. Wang, A. Lv, J. Hu, Ja. Xu, G. Lu, Microporous Mesoporous Mater., 152 (2012), pp. 178-184
DOI URL |
[26] |
T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Catal. Today, 179 (2012), pp. 27-34
DOI URL |
[27] |
R. Roldán, M. Sánchez-Sánchez, G. Sankar, F.J. Romero-Salguero, C. Jiménez-Sanchidrián, Microporous Mesoporous Mater., 99 (2007), pp. 288-298
DOI URL |
[28] |
J. Walendziewski, B. Pniak, Appl. Catal. A Gen., 250 (2003), pp. 39-47
DOI URL |
[29] |
L. Guo, X. Bao, Y. Fan, G. Shi, H. Liu, D. Bai, J. Catal., 294 (2012), pp. 161-170
DOI URL |
[30] |
J. Wang, D. Fan, T. Yu, J. Wang, T. Hao, X. Hu, M. Shen, W. Li, J. Catal., 322 (2015), pp. 84-90
DOI URL |
[31] |
J.E. Samad, J. Blanchard, C. Sayag, C. Louis, J.R. Regalbuto, J. Catal., 342 (2016), pp. 203-212
DOI URL |
[32] |
F. Alvarez, F.R. Ribeiro, G. Perot, C. Thomazeau, M. Guisnet, J. Catal., 162 (1996), pp. 179-189
DOI URL |
[33] |
A.D. Becke, J. Chem. Phys., 98 (1993), pp. 5648-5652
DOI URL |
[34] | C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37 (1988), pp. 785-789 |
[35] |
A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev., 88 (1988), pp. 899-926
DOI URL |
[36] |
A. Kyrlidis, S.J. Cook, A.K. Chakraborty, A.T. Bell, D.N. Theodorou, J. Phys. Chem., 99 (1995), pp. 1505-1515
DOI URL |
[37] |
M. Brändle, J. Sauer, J. Am. Chem. Soc., 120 (1998), pp. 1556-1570
DOI URL |
[38] |
C. Wen, S. Han, J. Xu, Y. Fan, J. Catal., 356 (2017), pp. 100-110
DOI URL |
[39] |
S. Andonova, S. Tamm, C. Montreuil, C. Lambert, L. Olsson, Appl. Catal. B: Environ., 180 (2016), pp. 775-787
DOI URL |
[40] |
Q. Liu, H. Zuo, T. Wang, L. Ma, Q. Zhang, Appl. Catal. A Gen., 468 (2013), pp. 68-74
DOI URL |
[41] |
Z. Jin, L. Zhang, J. Mater. Sci. Technol., 49 (2020), pp. 144-156
DOI URL |
[42] |
A.N. Kharat, P. Pendleton, A. Badalyan, M. Abedini, M.M. Amini, J. Catal., 205 (2002), pp. 7-15
DOI URL |
[43] |
A. Śrębowata, R. Baran, D. Łomot, D. Lisovytskiy, T. Onfroy, S. Dzwigaj, Appl. Catal. B-Environ., 147 (2014), pp. 208-220
DOI URL |
[44] |
C.I. Round, C.D. Williams, K. Latham, C.V.A. Duke, Chem. Mater., 13 (2001), pp. 468-472
DOI URL |
[45] |
Y. Liu, L. Xu, L. Zhao, L. Wei, X. Liu, Z. Yan, Catal. Sci. Technol., 6 (2016), pp. 3821-3831
DOI URL |
[46] | A. Dugué, O. Dymshits, L. Cormier, B. Cochain, G. Lelong, S. Belin, A. Zhilin, J. Non-Cryst. Solids, 413 (2015), pp. 24-33 |
[47] |
P. Lin, Y. Fu, Spectrosc. Lett., 34 (2001), pp. 83-92
DOI URL |
[48] |
S.D. Kelly, N. Yang, G.E. Mickelson, N. Greenlay, E. Karapetrova, W. Sinkler, S.R. Bare, J. Catal., 263 (2009), pp. 16-33
DOI URL |
[49] |
S. Das, S. Thakur, A. Bag, M.S. Gupta, P. Mondal, A. Bordoloi, J. Catal., 330 (2015), pp. 46-60
DOI URL |
[50] |
S. Tian, J. Chen, Fuel Process. Technol., 122 (2014), pp. 120-128
DOI URL |
[51] |
U. Eichler, M. Brändle, J. Sauer, J. Phys. Chem. B, 101 (1997), pp. 10035-10050
DOI URL |
[52] |
M. Guisnet, Catal. Today, 218-219 (2013), pp. 123-134
DOI URL |
[53] |
J. Zecevic, G. Vanbutsele, K.P. de Jong, J.A. Martens, Nature, 528 (2015), p. 245
DOI |
[54] |
N. Batalha, L. Pinard, C. Bouchy, E. Guillon, M. Guisnet, J. Catal., 307 (2013), pp. 122-131
DOI URL |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[3] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[4] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[5] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[6] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[7] | K.S. Chin, S. Idapalapati, D.T. Ardi. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 100-106. |
[8] | Shan Jiang, Hao Shao, Genyang Cao, Han Li, Weilin Xu, Jingliang Li, Jian Fang, Xungai Wang. Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution [J]. J. Mater. Sci. Technol., 2020, 59(0): 92-99. |
[9] | Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 173-182. |
[10] | Tao Liu, Jiahao Liu, Liuyang Zhang, Bei Cheng, Jiaguo Yu. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 113-121. |
[11] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[12] | Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 76-95. |
[13] | Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38(0): 28-38. |
[14] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[15] | Qiang Zhu, Chuanjie Wang, Kai Yang, Gang Chen, Heyong Qin, Peng Zhang. Plastic deformation behavior of a nickel-based superalloy on the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 40(0): 146-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||