J. Mater. Sci. Technol. ›› 2021, Vol. 73: 83-90.DOI: 10.1016/j.jmst.2020.08.063
• Research Article • Previous Articles Next Articles
Chendong Zhaoa, Jinshan Lia,*(
), Yudong Liua, William Yi Wanga, Hongchao Koua, Eric Beaugnonb, Jun Wanga,*(
)
Received:2020-06-22
Revised:2020-08-12
Accepted:2020-08-20
Published:2021-05-20
Online:2020-10-02
Contact:
Jinshan Li,Jun Wang
About author:nwpuwj@nwpu.edu.cn (J. Wang).Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation[J]. J. Mater. Sci. Technol., 2021, 73: 83-90.
Fig. 1. (a) DSC and (b) dilatation heating curves of the as-cast AlCoCrFeNi HEA measured at the heating rate of 10 K/min. The red line and the blue line are the origin curve and its differential curve, respectively.
| Prepare method | Method to investigate phase transformation | Phase transformation temperature (°C) | Reference |
|---|---|---|---|
| Arc melting | DSC | 597/963 | [ |
| Arc melting | DSC and thermal expansion | 571/647 | [ |
| Arc melting | DSC and thermal expansion | 527/627/962 | [ |
| Vacuum gas-atomization | DSC | 200/600 | [ |
| Vacuum induction-melting | DSC and thermal expansion | 595/958/1200 | Current study |
Table 1 Summary of characteristic phase transformation of AlCoCrFeNi HEA upon heating.
| Prepare method | Method to investigate phase transformation | Phase transformation temperature (°C) | Reference |
|---|---|---|---|
| Arc melting | DSC | 597/963 | [ |
| Arc melting | DSC and thermal expansion | 571/647 | [ |
| Arc melting | DSC and thermal expansion | 527/627/962 | [ |
| Vacuum gas-atomization | DSC | 200/600 | [ |
| Vacuum induction-melting | DSC and thermal expansion | 595/958/1200 | Current study |
Fig. 3. Back-scattered electron image illustrating (a) the microstructures of AlCoCrFeNi HEA at as-cast condition, which is composed of (b) ID and (c) DC region and the enlarge region marked by origin rectangle is shown in (d).
Fig. 4. Back-scattered electron image illustrating the microstructures of AlCoCrFeNi HEA under different heat treatment conditions: (a, b) 650 °C -10 h, (c, d) 1000 °C -10 h, (e, f) 1200 °C -10 h, (g, h) 1250 °C -10 h (the left is the low magnification and right shows its higher magnification BSE image at the grain boundary).
Fig. 5. EBSD phase map of the AlCoCrFeNi HEA at as-cast state and different heat treatment conditions: (a) as-cast, (b) 650 °C —10 h, (c) 1000 °C -10 h, (d) 1200 °C -10 h, (e) 1250 °C -10 h. The blue, green and red colour denote σ, FCC and BCC phases, respectively.
Fig. 6. Engineering compressive stress-strain curves of AlCoCrFeNi HEA at as-cast state and different heat treatment conditions compressed under room temperature.
| Alloy state | Compressive yield strength (MPa) | Ultimate compressive strength (MPa) | Fracture strain (%) |
|---|---|---|---|
| As-cast | 1348 ± 13 | 2255 ± 15 | 12 ± 1 |
| 650 °C-10 h | 1397 ± 22 | 1965 ± 44 | 9 ± 1 |
| 1000 °C-10 h | 910 ± 13 | 3015 ± 25 | 38 ± 2 |
| 1200 °C-10 h | 1148 ± 21 | 2606 ± 24 | 28 ± 2 |
| 1250 °C-10 h | 1247 ± 39 | 2531 ± 20 | 25 ± 2 |
Table 2 Mechanical properties of AlCoCrFeNi HEA at as-cast state and different heat treatment conditions.
| Alloy state | Compressive yield strength (MPa) | Ultimate compressive strength (MPa) | Fracture strain (%) |
|---|---|---|---|
| As-cast | 1348 ± 13 | 2255 ± 15 | 12 ± 1 |
| 650 °C-10 h | 1397 ± 22 | 1965 ± 44 | 9 ± 1 |
| 1000 °C-10 h | 910 ± 13 | 3015 ± 25 | 38 ± 2 |
| 1200 °C-10 h | 1148 ± 21 | 2606 ± 24 | 28 ± 2 |
| 1250 °C-10 h | 1247 ± 39 | 2531 ± 20 | 25 ± 2 |
| Alloy state | BCC/% | FCC/% | σ/% | Magnetization at 2 T and 298 K (emu/cm3) |
|---|---|---|---|---|
| As-cast | 66.9 | 32.1 | 1.0 | 201.66 |
| 650 °C-10 h | 58.5 | 36.1 | 5.4 | 150.78 |
| 1000 °C-10 h | 57.8 | 42.2 | 0.0 | 139.75 |
| 1200 °C-10 h | 85.6 | 14.4 | 0.0 | 358.06 |
| 1250 °C-10 h | 99.8 | 0.2 | 0.0 | 382.68 |
Table 3 Phase fraction (%) and magnetic properties of AlCoCrFeNi HEA at as-cast and different heat treatment conditions.
| Alloy state | BCC/% | FCC/% | σ/% | Magnetization at 2 T and 298 K (emu/cm3) |
|---|---|---|---|---|
| As-cast | 66.9 | 32.1 | 1.0 | 201.66 |
| 650 °C-10 h | 58.5 | 36.1 | 5.4 | 150.78 |
| 1000 °C-10 h | 57.8 | 42.2 | 0.0 | 139.75 |
| 1200 °C-10 h | 85.6 | 14.4 | 0.0 | 358.06 |
| 1250 °C-10 h | 99.8 | 0.2 | 0.0 | 382.68 |
Fig. 7. (a) M-H curves (range from -20000 Oe to 20000 Oe, measured at 298 K) of AlCoCrFeNi HEA at as-cast state and different heat treatment conditions. (b) Comparation of M-H curves (range from -80000 Oe to 80000 Oe, measured at 298 K) of AlCoCrFeNi HEA heat-treated at 650 °C and 1000 °C.
| Composition | Phase structure | Alloy state | Applied method | Reference |
|---|---|---|---|---|
| FeCoNi(AlSi)x | BCC + FCC | As-cast | The change of XRD peak | [ |
| CoFeMnNiX (X = Al, Cr, Ga, and Sn) | BCC + FCC +Co2MnSn | As-cast | AIMD simulation +DFT calculation | [ |
| AlNiCo(CuFe) | BCC + FCC | Annealed at 1000 °C for 48 h | Mathematics analysis | [ |
| AlCoCuFeNix | BCC + FCC | As-cast | IBCC/IFCC in XRD | [ |
| AlxCoCrFeNi | BCC + FCC | As-cast | Phase types +mathematics analysis | [ |
| FeCoNi(MnAl)x | BCC + FCC | As-cast | The change of XRD peak | [ |
| FeCoNi(CuAl)x | BCC + FCC | As-cast | IBCC/IFCC in XRD + TEM | [ |
| FeCoNi(CuAl)0.8Gax (0 < x < 0.08) | BCC + FCC | Annealed at different temperatures (350-450 °C) | IBCC/IFCC in XRD + TEM | [ |
| FeCoNi(CuAl)0.8Ga0.06 | BCC + FCC | As-cast | IBCC/IFCC in XRD + TEM | [ |
| AlCoCrFeNi | BCC + FCC +σ | As-cast and annealed at 650/1000/1200/1250 °C | ΔV in EBSD | Current study |
Table 4 Comparison of different methods applied to explain the evolution of magnetic properties of HEAs reported in the literature.
| Composition | Phase structure | Alloy state | Applied method | Reference |
|---|---|---|---|---|
| FeCoNi(AlSi)x | BCC + FCC | As-cast | The change of XRD peak | [ |
| CoFeMnNiX (X = Al, Cr, Ga, and Sn) | BCC + FCC +Co2MnSn | As-cast | AIMD simulation +DFT calculation | [ |
| AlNiCo(CuFe) | BCC + FCC | Annealed at 1000 °C for 48 h | Mathematics analysis | [ |
| AlCoCuFeNix | BCC + FCC | As-cast | IBCC/IFCC in XRD | [ |
| AlxCoCrFeNi | BCC + FCC | As-cast | Phase types +mathematics analysis | [ |
| FeCoNi(MnAl)x | BCC + FCC | As-cast | The change of XRD peak | [ |
| FeCoNi(CuAl)x | BCC + FCC | As-cast | IBCC/IFCC in XRD + TEM | [ |
| FeCoNi(CuAl)0.8Gax (0 < x < 0.08) | BCC + FCC | Annealed at different temperatures (350-450 °C) | IBCC/IFCC in XRD + TEM | [ |
| FeCoNi(CuAl)0.8Ga0.06 | BCC + FCC | As-cast | IBCC/IFCC in XRD + TEM | [ |
| AlCoCrFeNi | BCC + FCC +σ | As-cast and annealed at 650/1000/1200/1250 °C | ΔV in EBSD | Current study |
| [1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
| [3] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
DOI URL |
| [4] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer, 2016. |
| [5] |
M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, Metall. Mater. Trans. A 47 (2016) 3322-3332.
DOI URL |
| [6] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
| [7] |
G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu, J. Mater. Sci. Technol. 35 (2019) 578-583.
DOI URL |
| [8] |
F. Otto, A. Dlouh´y, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
| [9] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI URL |
| [10] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL |
| [11] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
| [12] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59 (2011) 6308-6317.
DOI URL |
| [13] | L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao, J. Mater, Sci. Technol. 42 (2020) 85-96. |
| [14] |
O.N. Senkov, J.K. Jensen, A.L. Pilcha, D.B. Miracle, H.L. Fraser, Mater. Des. 139 (2018) 498-511.
DOI URL |
| [15] |
S.K. Varma, F. Sanchez, S. Moncayo, C.V. Ramana, J. Mater. Sci. Technol. 38 (2020) 189-196.
DOI URL |
| [16] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765.
DOI URL |
| [17] |
O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Acta Mater. 61 (2013) 1545-1557.
DOI URL |
| [18] |
Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, Sci. Rep. 3 (2013) 1455.
DOI URL |
| [19] |
P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Phys. Rev. Lett. 113 (2014) 107001.
DOI URL |
| [20] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
| [21] |
H. Yang, J. Li, X. Pan, W.Y. Wang, H. Kou, J. Wang, J. Mater. Sci. Technol. 72 (2021) 1-7.
DOI URL |
| [22] |
Y. Ma, F.P. Yuan, M.X. Yang, P. Jiang, E. Ma, X.L. Wu, Acta Mater. 148 (2018) 407-418.
DOI URL |
| [23] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
| [24] |
T.T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130 (2017) 10-18.
DOI URL |
| [25] |
K. Raghavendra, B.S. Murty, V. Srinivas, J. Alloys Compd. 746 (2018) 194-199.
DOI URL |
| [26] |
C. Liu, W. Peng, C.S. Jiang, H. Guo, J. Tao, X. Deng, Z. Chen, J. Mater. Sci. Technol. 35 (2019) 1175-1183.
DOI URL |
| [27] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4 (2014) 6200.
DOI URL |
| [28] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
| [29] |
W.R. Wang, W. Wang, J.W. Yeh, J. Alloys Compd. 589 (2014) 143-152.
DOI URL |
| [30] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 444-458.
DOI |
| [31] |
B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y. Zheng, R.S. Mishra, R. Banerjee, Acta Mater. 153 (2018) 169-185.
DOI URL |
| [32] |
B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, R. Banerjee, Scr. Mater. 162 (2019) 18-23.
DOI URL |
| [33] |
D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srinivasan, R.S. Mishra, R. Banerjee, Acta Mater. 165 (2019) 420-430.
DOI |
| [34] |
Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Cho, J.W. Yeh, S.J. Lin, J. Alloys Compd. 509 (2011) 1607-1614.
DOI URL |
| [35] |
A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloys Compd. 683 (2016) 221-230.
DOI URL |
| [36] |
K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloys Compd. 728 (2017) 1235-1238.
DOI URL |
| [37] |
H. Chou, Y. Chang, S. Chen, J. Yeh, Mater. Sci. Eng. B 163 (2009) 184-189.
DOI URL |
| [38] |
S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, N. Uporova, Intermetallics 83 (2017) 1-8.
DOI URL |
| [39] |
K.C. Cheng, J.H. Chen, S. Stadler, S.H. Chen, Appl. Surf. Sci. 478 (2019) 478-486.
DOI URL |
| [40] |
D. Karlsson, G. Lindwall, A. Lundbäck, M. Amnebrink, M. Boström, L. Riekehr, M. Schuisky, M. Sahlberg, U. Jansson, Addit. Manuf. 27 (2019) 72-79.
DOI |
| [41] |
Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Y.Wang, G.F. Zhao, F.Q. Yang, P.K. Liaw, Mater. Sci. Eng. A 647 (2015) 229-240.
DOI URL |
| [42] |
L. Meshi, Y. Linden, A. Munitz, S. Salhov, M. Pinkas, Mater. Charact. 148 (2019) 171-177.
DOI URL |
| [43] |
K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloys Compd. 728 (2017) 1235-1238.
DOI URL |
| [44] | J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge, 2010. |
| [45] |
J. Cieslak, J. Tobola, M. Reissner, Acta Mater. 123 (2017) 35-43.
DOI URL |
| [46] |
P. Li, A. Wang, C.T. Liu, Intermetallics 87 (2017) 21-26.
DOI URL |
| [47] |
Q. Zhang, H. Xu, X.H. Tan, X.L. Hou, S.W. Wu, G.S. Tan, L.Y. Yu, J. Alloys Compd. 693 (2017) 1061-1067.
DOI URL |
| [48] |
Z. Li, H. Xu, Y. Gu, M. Pan, L. Yu, X. Tan, X. Hou, J. Alloys Compd. 746 (2018) 285-291.
DOI URL |
| [49] |
Z. Li, Y. Gu, C. Wang, M. Pan, H. Zhang, Z. Wu, X. Hou, X. Tan, H. Xu, J. Alloys Compd. 779 (2019) 293-300.
DOI URL |
| [1] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
| [2] | Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure [J]. J. Mater. Sci. Technol., 2021, 73(0): 1-8. |
| [3] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
| [4] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [5] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
| [6] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
| [7] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
| [8] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
| [9] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
| [10] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
| [11] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
| [12] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
| [13] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
| [14] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
| [15] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
