J. Mater. Sci. Technol. ›› 2021, Vol. 72: 144-153.DOI: 10.1016/j.jmst.2020.07.031
• Research Article • Previous Articles Next Articles
Chun Lia, Chaolong Rena, Yue Maa,b, Jian Hea,b, Hongbo Guoa,b,*()
Received:
2020-05-28
Revised:
2020-07-10
Accepted:
2020-07-10
Published:
2021-05-10
Online:
2021-05-10
Contact:
Hongbo Guo
About author:
* School of Materials Science and Engineering, BeihangUniversity, Beijing, 100191, China. E-mail address: guo.hongbo@buaa.edu.cn (H. Guo).1 These authors contributed equally to this work.
Chun Li, Chaolong Ren, Yue Ma, Jian He, Hongbo Guo. Effects of rare earth oxides on microstructures and thermo-physical properties of hafnia ceramics[J]. J. Mater. Sci. Technol., 2021, 72: 144-153.
Fig. 1. XRD patterns of (a) Gd-Y co-doped Hf0.76GdxY0.24-xO1.88, (b) Yb-Y co-doped Hf0.76YbxY0.24-xO1.88, (c) Gd-Yb-Y co-doped Hf0.76Gd0.5xYb0.5xY0.24-xO1.88 and (d) La-Yb-Y co-doped Hf0.76La0.5xYb0.5xY0.24-xO1.88 ceramics.
Y24 | La3Yb3Y18 | La6Yb6Y12 | La9Yb9Y6 | La12Yb12 | |
---|---|---|---|---|---|
VF | 100 | 100 | 91.2 | 84.7 | 73.7 |
VP | — | — | 8.8 | 15.3 | 23.2 |
VM | — | — | — | — | 3.1 |
Table 1 Phase compositions (vol.%) in the La-Yb-Y co-doped Hf0.76La0.5xYb0.5xY0.24-xO1.88 series.
Y24 | La3Yb3Y18 | La6Yb6Y12 | La9Yb9Y6 | La12Yb12 | |
---|---|---|---|---|---|
VF | 100 | 100 | 91.2 | 84.7 | 73.7 |
VP | — | — | 8.8 | 15.3 | 23.2 |
VM | — | — | — | — | 3.1 |
Fig. 3. SEM images of Gd-Y co-doped Hf0.76GdxY0.24-xO1.88 (left column), Yb-Y co-doped Hf0.76YbxY0.24-xO1.88 (middle column), and Gd-Yb-Y co-doped Hf0.76Gd0.5xYb0.5xY0.24-xO1.88 (right column) ceramics.
Points | Hf | La | Yb | O |
---|---|---|---|---|
A | 39.43 | 1.51 | 7.88 | 51.19 |
B | 29.32 | 17.38 | 3.38 | 49.92 |
C | 42.36 | 1.62 | 2.19 | 53.83 |
Table 2 Chemical compositions of the A, B and C points in Fig. 4(e) by EDS (at.%).
Points | Hf | La | Yb | O |
---|---|---|---|---|
A | 39.43 | 1.51 | 7.88 | 51.19 |
B | 29.32 | 17.38 | 3.38 | 49.92 |
C | 42.36 | 1.62 | 2.19 | 53.83 |
Fig. 5. Thermal conductivities of (a) Gd-Y co-doped Hf0.76GdxY0.24-xO1.88, (b) Yb-Y co-doped Hf0.76YbxY0.24-xO1.88, (c) Gd-Yb-Y co-doped Hf0.76Gd0.5xYb0.5xY0.24-xO1.88 and (d) La-Yb-Y co-doped Hf0.76La0.5xYb0.5xY0.24-xO1.88 ceramics.
Ions | Hf4+ | Y3+ | Gd3+ | Yb3+ | La3+ |
---|---|---|---|---|---|
Radius (nm) | 0.076 | 0.096 | 0.100 | 0.0925 | 0.110 |
Table 3 Effective ionic radius of the cations in the hafnia based solid solution [36].
Ions | Hf4+ | Y3+ | Gd3+ | Yb3+ | La3+ |
---|---|---|---|---|---|
Radius (nm) | 0.076 | 0.096 | 0.100 | 0.0925 | 0.110 |
Fig. 7. lattice parameters of (a) Gd-Y, Yb-Y and Gd-Yb-Y co-doped Hf0.76LnxY0.24-xO1.88 with single fluorite structure, Ln = Gd, Yb or Gd + Yb, and (b) La-Yb-Y co-doped Hf0.76LnxY0.24-xO1.88 with fluorite and pyrochlore structures, Ln = La + Yb.
Fig. 8. (a) Ion concentration in La-Yb-Y co-doped Hf0.76La0.5xYb0.5xY0.24-xO1.88 ceramics and (b) element distributions in Hf0.76La0.09Yb0.09Y0.06O1.88, La9Yb9Y6.
Fig. 9. Grain size in the Gd-Y, Yb-Y and Gd-Yb-Y co-doped Hf0.76LnxY0.24-xO1.88 ceramics, Ln = Gd, Yb or Gd + Yb (a), and single Yb-Y co-doped Hf0.76YbxY0.24-xO1.88 (b).
Fig. 11. (a) Thermal radiation and (b) transmittance spectrum of La-Yb-Y co-doped Hf0.76La0.5xYb0.5xY0.24-xO1.88 ceramics with a thickness of ~135 μm.
Parameters | Y24 | La3Yb3Y18 | La6Yb6Y12 | La9Yb9Y6 | La12Yb12 |
---|---|---|---|---|---|
A (×10-11 W m-1 K-4) | <1 | 8.15 | 61.10 | 36.87 | 25.63 |
R-square | — | 0.900 | 0.998 | 0.969 | 0.977 |
Table 4 Cubic fitting coefficient A for the thermal radiation conductivity of the La-Yb-Y co-doped hafnia solid solution.
Parameters | Y24 | La3Yb3Y18 | La6Yb6Y12 | La9Yb9Y6 | La12Yb12 |
---|---|---|---|---|---|
A (×10-11 W m-1 K-4) | <1 | 8.15 | 61.10 | 36.87 | 25.63 |
R-square | — | 0.900 | 0.998 | 0.969 | 0.977 |
Y24 | Gd6Y18 | Yb6Y18 | Gd3Yb3Y18 |
---|---|---|---|
10.171 | 10.356 | 10.311 | 10.25 |
Table 5 Average linear expansion coefficients (TEC, 10-6 K-1) of Hf0.76Ln0.06Y0.18O1.88 between 200 and 1200 °C.
Y24 | Gd6Y18 | Yb6Y18 | Gd3Yb3Y18 |
---|---|---|---|
10.171 | 10.356 | 10.311 | 10.25 |
[1] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
DOI URL |
[2] |
R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Surf. Coat. Technol. 205 (2010) 938-942.
DOI URL |
[3] | M.J. Stiger, N.M. Yanar, M.G. Topping, F.S. Pettit, G.H. Meier, Z. Metallkd. 90 (1999) 1069-1078. |
[4] |
R.A. Miller, J. Therm. Spray Technol. 6 (1997) 35-42.
DOI URL |
[5] | B. Siebert, C. Funke, R. Vaβen, D. Stöver, J. Mater. Process. Technol. 92 (1999) 217-223. |
[6] |
D. Zhu, R.A. Miller, Surf. Coat. Technol. 108-109 (1998) 114-120.
DOI URL |
[7] |
X. Zhao, X. Wang, P. Xiao, Surf. Coat. Technol. 200 (2006) 5946-5955.
DOI URL |
[8] |
V. Lughi, D.R. Clarke, Surf. Coat. Technol. 200 (2005) 1287-1291.
DOI URL |
[9] |
V. Lughi, D.R. Clarke, J. Am. Ceram. Soc. 88 (2005) 2552-2558.
DOI URL |
[10] |
K. Matsumoto, Y. Itoh, T. Kameda, Sci. Technol. Adv. Mater. 4 (2003) 153-158.
DOI URL |
[11] |
J. Singh, D.E. Wolfe, R.A. Miller, J.I. Eldridge, D.M. Zhu, J. Mater. Sci. 39 (2004) 1975-1985.
DOI URL |
[12] | J. Singh, D.E. Wolfe, R.D. Miller, J. Eldridge, D.M. Zhu, Mater. Sci. Forum 455 (2004) 579-586. |
[13] |
C. Li, Y. Ma, Z. Xue, Y. Yang, J. Chen, H. Guo, Ceram. Int. 44 (2018) 18213-18221.
DOI URL |
[14] |
C.K. Roy, M. Noor-A-Alam, A.R. Choudhuri, C.V. Ramana, Ceram. Int. 38 (2012) 1801-1806.
DOI URL |
[15] |
X. Zhao, D. Vanderbilt, Phys. Rev. B 65 (2002), 233106.
DOI URL |
[16] |
T.A. Lee, A. Navrotsky, J. Mater. Res. 19 (2004) 1855-1861.
DOI URL |
[17] |
J. Wang, H.P. Li, R. Stevens, J. Mater. Sci. 27 (1992) 5397-5430.
DOI URL |
[18] |
C.K. Lee, E. Cho, H.S. Lee, C.S. Hwang, S. Han, Phys. Rev. B 78 (2008), 012102.
DOI URL |
[19] |
G.H. Chen, Z.F. Hou, X.G. Gong, Q. Li, J. Appl. Phys. 104 (2008), 074101.
DOI URL |
[20] | D.M. Zhu, R.A. Miller, D. Fox, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, U.S., January, 2008. |
[21] | D.M. Zhu, R.A. Miller, Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems, 2004, August 1 https://ntrs.nasa.gov/search.jsp?R=20040110835. |
[22] | D.M. Zhu, Low Conductivity Thermal Barrier Coatings, 2005, September 1 http://ntrs.nasa.gov/search.jsp?R=20050216393. |
[23] | D.M. Zhu, D.S. Fox, L. Ghosn, J.L. Smialek, R.A. Miller, Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective, 2009, January 18 https://ntrs.nasa.gov/search.jsp?R=20130013152. |
[24] | D.M. Zhu, N.P. Bansal, R.A. Miller, Proceedings of the 105th Annual Meeting and Exposition of the American Ceramic Society, Nashville, Tennessee, U.S., 2003, 27-30 April. |
[25] | D.M. Zhu, R.A. Miller, Low Conductivity and Sintering-Resistant Thermal Barrier Coatings, US Patent, No. 6812176, 2004. |
[26] | D.M. Zhu, D.S. Fox, N.P. Bansal, R.A. Miller, Advanced Oxide Material Systems for 1650 ◦C Thermal/environmental Barrier Coating Applications, 2004, December 1 https://ntrs.nasa.gov/search.jsp?R=20050041916. |
[27] |
C. Wang, Y. Wang, A. Zhang, Y. Cheng, F. Chi, Z. Yu, J. Mater. Sci. 48 (2013) 8133-8139.
DOI URL |
[28] | C. Li, J. He, Y. Ma, Rare Met. Mater. Eng. (2020) http://dx.doi.org/10.1007/s12598-020-01421-5. |
[29] |
D.M. Zhu, J.A. Nesbitt, C.A. Barrett, T.R. McCue, R.A. Miller, J. Therm. Spray Technol. 13 (2004) 84-92.
DOI URL |
[30] |
D.M. Zhu, R.A. Miller, Int. J. Appl. Ceram. Technol. 1 (2004) 86-94.
DOI URL |
[31] |
L. Guo, M. Li, F. Ye, Ceram. Int. 42 (2016) 7360-7365.
DOI URL |
[32] | D.M. Zhu, Y.L. Chen, R.A. Miller, Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-oxide-doped Zirconia-yttria Thermal Barrier Coatings, 2004, January 01 https://ntrs.nasa.gov/search.jsp?R=20040015329. |
[33] | C.Y. Liang, Y.J. Liu, Manual of Practical Inorganic Matter Thermodynamics, second ed., Northeastern University Press, Shengyang, 1993 (in Chinese). |
[34] | P.G. Klemens, High Temp. High Press. 23 (1991) 241-248. |
[35] | J. Manara, M. Arduini-Schuster, H.J. Rätzer-Scheibe, U.Schulz, Surf. Coat. Technol. 203 (2009) 1059-1068. |
[36] |
R.D. Shannon, Acta Crystallogr. A 32 (1976) 751-767.
DOI URL |
[37] |
G.R. Lumpkin, M. Pruneda, S. Rios, K.L. Smith, K. Trachenko, K.R. Whittle, N.J. Zaluzec, J. Solid State Chem. 180 (2007) 1512-1518.
DOI URL |
[38] |
L. Minervini, R.W. Grimes, K.E. Sickafus, J. Am. Ceram. Soc. 83 (2000) 1873-1878.
DOI URL |
[39] |
P.E. Blanchard, S. Liu, B.J. Kennedy, C.D. Ling, M. Avdeev, J.B. Aitken, A. Tadich, J. Phys. Chem. C 117 (2013) 2266-2273.
DOI URL |
[40] |
L. Guo, M. Li, Y. Zhang, F. Ye, J. Mater. Sci. Technol. 32 (2016) 28-33.
DOI URL |
[41] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[42] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[43] |
Z. Qu, C. Wan, W. Pan, Acta Mater. 60 (2012) 2939-2949.
DOI URL |
[44] |
M. Li, L. Guo, F. Ye, Ceram. Int. 42 (2016) 16584-16588.
DOI URL |
[45] | S. Wu, Z. Xue, X. Ji, E. Byon, S. Zhang, J. Alloy. Compd. (2020), 155872. |
[46] |
N.P. Bansal, D. Zhu, Mater. Sci. Eng. A 459 (2007) 192-195.
DOI URL |
[47] |
M. Zhao, X. Ren, W. Pan, J. Eur. Ceram. Soc. 35 (2015) 1055-1061.
DOI URL |
[48] |
X.Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 24 (2004) 1-10.
DOI URL |
[1] | Juanli Zhao, Yuchen Liu, Yun Fan, Wei Zhang, Chengguan Zhang, Guang Yang, Hongfei Chen, Bin Liu. Native point defects and oxygen migration of rare earth zirconate and stannate pyrochlores [J]. J. Mater. Sci. Technol., 2021, 73(0): 23-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||