J. Mater. Sci. Technol. ›› 2021, Vol. 63: 133-144.DOI: 10.1016/j.jmst.2020.04.020
• Research Article • Previous Articles Next Articles
Chengqian Zhang1, Lan Wu1, Anjin Tao2, Hriday Bera1, Xing Tang3, Dongmei Cun1,*(), Mingshi Yang1,4
Received:
2019-12-15
Revised:
2020-01-25
Accepted:
2020-02-09
Published:
2021-02-10
Online:
2021-02-15
Contact:
Dongmei Cun
About author:
*E-mail address: cundongmei@163.com (D. Cun).Chengqian Zhang, Lan Wu, Anjin Tao, Hriday Bera, Xing Tang, Dongmei Cun, Mingshi Yang. Formulation and in vitro characterization of long-acting PLGA injectable microspheres encapsulating a peptide analog of LHRH[J]. J. Mater. Sci. Technol., 2021, 63: 133-144.
Formulation | Outer water phase | Organic solvent | Volume ratio of inner water phase to oil phase | PLGA concentration | Ultrasonic power | Homogenization rate |
---|---|---|---|---|---|---|
F-1 | 1% (w/v) PVA | DCM | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-2 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-3 | 1% (w/v) PVA-SC | DCM | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-4 | 1% (w/v) PVA-SA | EA | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-5 | 1% (w/v) PVA-SA | EA: DCM (v/v, 1:1) | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-6 | 1% (w/v) PVA-SA | DCM | 1:5 | 15% (w/v) | 195 W | 8000 rpm |
F-7 | 1% (w/v) PVA-SA | DCM | 1:8 | 15% (w/v) | 195 W | 8000 rpm |
F-8 | 1% (w/v) PVA-SA | DCM | 1:2 | 10% (w/v) | 195 W | 8000 rpm |
F-9 | 1% (w/v) PVA-SA | DCM | 1:2 | 5% (w/v) | 195 W | 8000 rpm |
F-10 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 260 W | 8000 rpm |
F-11 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 130 W | 8000 rpm |
F-12 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 195W | 14500 rpm |
F-13 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 195 W | 0 rpm |
Table 1 Various material attributes and process parameters evaluated on the TA-PLGA-MS.
Formulation | Outer water phase | Organic solvent | Volume ratio of inner water phase to oil phase | PLGA concentration | Ultrasonic power | Homogenization rate |
---|---|---|---|---|---|---|
F-1 | 1% (w/v) PVA | DCM | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-2 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-3 | 1% (w/v) PVA-SC | DCM | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-4 | 1% (w/v) PVA-SA | EA | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-5 | 1% (w/v) PVA-SA | EA: DCM (v/v, 1:1) | 1:2 | 15% (w/v) | 195 W | 8000 rpm |
F-6 | 1% (w/v) PVA-SA | DCM | 1:5 | 15% (w/v) | 195 W | 8000 rpm |
F-7 | 1% (w/v) PVA-SA | DCM | 1:8 | 15% (w/v) | 195 W | 8000 rpm |
F-8 | 1% (w/v) PVA-SA | DCM | 1:2 | 10% (w/v) | 195 W | 8000 rpm |
F-9 | 1% (w/v) PVA-SA | DCM | 1:2 | 5% (w/v) | 195 W | 8000 rpm |
F-10 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 260 W | 8000 rpm |
F-11 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 130 W | 8000 rpm |
F-12 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 195W | 14500 rpm |
F-13 | 1% (w/v) PVA-SA | DCM | 1:2 | 15% (w/v) | 195 W | 0 rpm |
Size | EE (%) | DL (%) | ||
---|---|---|---|---|
D50 (μm) | Span | |||
F-1 | 39.9 ± 2.2 | 1.4 ± 0.1 | 16.7 ± 1.2** | 0.8 ± 0.1** |
F-2 | 35.3 ± 1.8 | 1.4 ± 0.0 | 63.5 ± 3.4 | 3.2 ± 0.2 |
F-3 | 21.0 ± 0.7** | 1.7 ± 0.0** | 8.4 ± 0.5** | 0.4 ± 0.0** |
F-4 | 80.0 ± 7.7** | 1.3 ± 0.1 | 38.9 ± 0.4** | 1.9 ± 0.0** |
F-5 | 35.4 ± 2.9 | 1.4 ± 0.1 | 65.1 ± 2.7 | 3.3 ± 0.1 |
F-6 | 30.3 ± 2.6** | 1.4 ± 0.1 | 36.9 ± 4.2** | 1.8 ± 0.2** |
F-7 | 25.4 ± 0.8** | 1.5 ± 0.0* | 33.8 ± 6.4** | 1.7 ± 0.3** |
F-8 | 27.8 ± 3.3** | 1.6 ± 0.0** | 41.9 ± 1.1** | 2.1 ± 0.1** |
F-9 | 21.7 ± 1.0** | 1.6 ± 0.0** | 35.4 ± 3.5** | 1.8 ± 0.2** |
F-10 | 42.3 ± 0.1** | 1.3 ± 0.0 | 52.2 ± 4.2* | 2.6 ± 0.2* |
F-11 | 42.0 ± 2.0** | 1.4 ± 0.0 | 53.8 ± 3.6* | 2.7 ± 0.2* |
F-12 | 23.9 ± 1.4** | 1.6 ± 0.1* | 58.1 ± 2.7 | 2.9 ± 0.1 |
F-13 | 77.5 ± 5.7** | 1.2 ± 0.1* | 57.7 ± 2.2 | 2.9 ± 0.1 |
Table 2 Size and EE/DL of different formulations of TA-PLGA-MS.
Size | EE (%) | DL (%) | ||
---|---|---|---|---|
D50 (μm) | Span | |||
F-1 | 39.9 ± 2.2 | 1.4 ± 0.1 | 16.7 ± 1.2** | 0.8 ± 0.1** |
F-2 | 35.3 ± 1.8 | 1.4 ± 0.0 | 63.5 ± 3.4 | 3.2 ± 0.2 |
F-3 | 21.0 ± 0.7** | 1.7 ± 0.0** | 8.4 ± 0.5** | 0.4 ± 0.0** |
F-4 | 80.0 ± 7.7** | 1.3 ± 0.1 | 38.9 ± 0.4** | 1.9 ± 0.0** |
F-5 | 35.4 ± 2.9 | 1.4 ± 0.1 | 65.1 ± 2.7 | 3.3 ± 0.1 |
F-6 | 30.3 ± 2.6** | 1.4 ± 0.1 | 36.9 ± 4.2** | 1.8 ± 0.2** |
F-7 | 25.4 ± 0.8** | 1.5 ± 0.0* | 33.8 ± 6.4** | 1.7 ± 0.3** |
F-8 | 27.8 ± 3.3** | 1.6 ± 0.0** | 41.9 ± 1.1** | 2.1 ± 0.1** |
F-9 | 21.7 ± 1.0** | 1.6 ± 0.0** | 35.4 ± 3.5** | 1.8 ± 0.2** |
F-10 | 42.3 ± 0.1** | 1.3 ± 0.0 | 52.2 ± 4.2* | 2.6 ± 0.2* |
F-11 | 42.0 ± 2.0** | 1.4 ± 0.0 | 53.8 ± 3.6* | 2.7 ± 0.2* |
F-12 | 23.9 ± 1.4** | 1.6 ± 0.1* | 58.1 ± 2.7 | 2.9 ± 0.1 |
F-13 | 77.5 ± 5.7** | 1.2 ± 0.1* | 57.7 ± 2.2 | 2.9 ± 0.1 |
Fig. 1. SEM images of the microspheres prepared using different compositions of outer water phase (a, b: F-1, 1% (w/v) PVA, c, d: F-2, 1% (w/v) PVA-SA, e, f: F-3, 1% (w/v) PVA-SC).
Fig. 3. SEM images of the microspheres prepared using different volume ratios of inner water to oil phase (a, b: F-2, Vw1/Vo ratio of 1:2, c, d: F-6, Vw1/Vo ratio of 1:5, e, f: F-7, Vw1/Vo ratio of 1:8).
Fig. 4. SEM images of the microspheres prepared using different PLGA concentrations (a, b: F-2, PLGA of 15% (w/v), c, d: F-8, PLGA of 10% (w/v), e, f: F-9, PLGA of 5% (w/v)).
Fig. 5. SEM images of the microspheres prepared using different ultrasonication powers (a, b: F-10, ultrasonication power of 260 W, c, d: F-2, ultrasonication power of 195 W, e, f: F-11, ultrasonication power of 130 W).
Fig. 6. SEM images of the microspheres prepared using different homogenization rates (a, b: F-12, homogenization rate of 14500 rpm for 30 s, c, d: F-2, homogenization rate of 8000 rpm for 30 s, e, f: F-13, no homogenization).
Size | EE (%) | DL (%) | ||
---|---|---|---|---|
D50 (μm) | Span | |||
4 ℃ | 32.8 ± 2.2 | 1.5 ± 0.1 | 64.2 ± 1.9 | 3.2 ± 0.1 |
26 ℃ | 35.3 ± 1.8 | 1.4 ± 0.0 | 63.5 ± 3.4 | 3.2 ± 0.2 |
39 ℃ | 36.6 ± 1.0 | 1.4 ± 0.0 | 60.8 ± 5.9 | 3.0 ± 0.3 |
Table 3 Size and EE/DL of TA-PLGA-MS (F-2) prepared using different incubation temperatures.
Size | EE (%) | DL (%) | ||
---|---|---|---|---|
D50 (μm) | Span | |||
4 ℃ | 32.8 ± 2.2 | 1.5 ± 0.1 | 64.2 ± 1.9 | 3.2 ± 0.1 |
26 ℃ | 35.3 ± 1.8 | 1.4 ± 0.0 | 63.5 ± 3.4 | 3.2 ± 0.2 |
39 ℃ | 36.6 ± 1.0 | 1.4 ± 0.0 | 60.8 ± 5.9 | 3.0 ± 0.3 |
[1] |
K. Park, G.Y. Jung, M.-K. Kim, M.S. Park, Y.K. Shin, J.-K. Hwang, S.H. Yuk, Macromol. Res. 20 (2012) 847-851.
DOI URL |
[2] |
F. Wan, M. Yang, Int. J. Pharm. 498 (2016) 82-95.
DOI URL PMID |
[3] | P.W. Lee, J.K. Pokorski, WIREs. Nanomed. Nanobiotechnol. (2018) e1516. |
[4] |
C. Zhu, Y. Huang, X. Zhang, L. Mei, X. Pan, G. Li, C. Wu, Coll. Surf. B Biointerf. 132 (2015) 103-110.
DOI URL |
[5] |
Y. Yang, Q. Chen, J. Lin, Z. Cai, G. Liao, K. Wang, L. Bai, P. Zhao, Y.Z. Yu, Curr. Med. Chem. 26 (2019) 2285-2296.
DOI URL PMID |
[6] |
W. Chen, A. Palazzo, W.E. Hennink, R.J. Kok, Mol. Pharm. 14 (2017) 459-467.
DOI URL PMID |
[7] |
E.D. Crawford, J.M. Phillips, Cancer Manag Res. 3 (2011) 201-209.
DOI URL PMID |
[8] |
C. Busatto, J. Pesoa, I. Helbling, J. Luna, D. Estenoz, Int. J. Pharm. 536 (2018) 360-369.
DOI URL PMID |
[9] |
F. Ramazani, W. Chen, C.F. van Nostrum, G. Storm, F. Kiessling, T. Lammers, W.E. Hennink, R.J. Kok, Int. J. Pharm. 499 (2016) 358-367.
DOI URL PMID |
[10] |
C. Martin-Sabroso, A.I. Fraguas-Sanchez, J. Aparicio-Blanco, M.F. Cano-Abad, A.I. Torres-Suarez, Int. J. Pharm. 480 (2015) 27-36.
DOI URL PMID |
[11] |
F. Qi, J. Wu, D. Hao, T. Yang, Y. Ren, G. Ma, Z. Su, Pharm. Res. 31 (2014) 1566-1574.
DOI URL PMID |
[12] |
R.B. Shah, S.P. Schwendeman, J. Control. Release. 196 (2014) 60-70.
DOI URL PMID |
[13] |
S.E. Reinhold, S.P. Schwendeman, Macromol. Biosci. 13 (2013) 1700-1710.
DOI URL PMID |
[14] |
F. Wan, M.J. Maltesen, S.K. Andersen, S. Bjerregaard, S.G. Baldursdottir, C. Foged, J. Rantanen, M. Yang, Pharm. Res. 31 (2014) 2940-2951.
DOI URL PMID |
[15] |
M. Ye, S. Kim, K. Park, J. Control. Release. 146 (2010) 241-260.
DOI URL PMID |
[16] |
S.A. Malik, W.H. Ng, J. Bowen, J. Tang, A. Gomez, A.J. Kenyon, R.M. Day, J. Colloid. Interf. Sci. 467 (2016) 220-229.
DOI URL |
[17] |
E. Jafarifar, M. Hajialyani, M. Akbari, M. Rahimi, Y. Shokoohinia, A. Fattahi, Pharm. Dev. Technol. 22 (2017) 836-843.
DOI URL PMID |
[18] |
G. Della Porta, R. Campardelli, V. Cricchio, F. Oliva, N. Maffulli, E. Reverchon, J. Pharm. Sci. 105 (2016) 2164-2172.
DOI URL PMID |
[19] |
P. Tomar, N. Giri, V.S. Karwasara, R.S. Pandey, V.K. Dixit, Pharm. Dev. Technol. 17 (2011) 421-428.
DOI URL PMID |
[20] |
A. Mahboubian, S.K. Hashemein, S. Moghadam, F. Atyabia, R. Dinarvand, Iran. J. Pharm. Res. 9 (2010) 369-378.
URL PMID |
[21] |
F. Cui, D. Cun, A. Tao, M. Yang, K. Shi, M. Zhao, Y. Guan, J. Control. Release. 107 (2005) 310-319.
URL PMID |
[22] |
X. Li, S. Chang, G. Du, Y. Li, J. Gong, M. Yang, Z. Wei, Int. J. Pharm. 433 (2012) 79-88.
DOI URL PMID |
[23] |
I. Tomic, A. Vidis-Millward, M. Mueller-Zsigmondy, J.M. Cardot, Int. J. Pharm. 505 (2016) 42-51.
DOI URL PMID |
[24] | S. Hao, Y. Wang, B. Wang, J. Deng, L. Zhu, Y. Cao, Mater. Sci. Eng. C.Mater. Biol. Appl. 39 (2014) 113-119. |
[25] |
B. Amoyav, O. Benny, Polymers 11 (2019) 1-14.
DOI URL |
[26] |
S. Nicoli, P. Santi, P. Couvreur, G. Couarraze, P. Colombo, E. Fattal, Int. J. Pharm. 214 (2001) 31-35.
DOI URL PMID |
[27] |
R. Liu, S.S. Huang, Y.H. Wan, G.H. Ma, Z.G. Su, Coll. Surf. B Biointerf. 51 (2006) 30-38.
DOI URL |
[28] |
S. Marquette, C. Peerboom, A. Yates, L. Denis, J. Goole, K. Amighi, Eur. J. Pharm. Biopharm. 86 (2014) 393-403.
DOI URL PMID |
[29] |
Y. Wei, Y. Wang, L. Wang, D. Hao, G. Ma, Coll. Surf. B Biointerf. 87 (2011) 399-408.
DOI URL |
[30] |
G. Ruan, S.-S. Feng, Q.-T. Li, J. Control. Release. 84 (2002) 151-160.
DOI URL PMID |
[31] |
F. Ito, H. Fujimori, K. Makino, Coll. Surf. B Biointerf. 54 (2007) 173-178.
DOI URL |
[32] |
S. Mao, J. Xu, C. Cai, O. Germershaus, A. Schaper, T. Kissel, Int. J. Pharm. 334 (2007) 137-148.
DOI URL PMID |
[33] |
A. Gaignaux, J. Reeff, F. Siepmann, J. Siepmann, C. De Vriese, J. Goole, K. Amighi, Int. J. Pharm. 437 (2012) 20-28.
DOI URL PMID |
[34] |
Y.-Y. Yang, T.-S. Chung, X.-L. Bai, W.-K. Chan, Chem. Eng. Sci. 55 (2000) 2223-2236.
DOI URL |
[35] |
G. Gasparini, S.R. Kosvintsev, M.T. Stillwell, R.G. Holdich, Coll. Surf. B Biointerf. 61 (2008) 199-207.
DOI URL |
[36] |
J. Wu, T. Kong, K.W. Yeung, H.C. Shum, K.M. Cheung, L. Wang, M.K. To, Acta. Biomater. 9 (2013) 7410-7419.
DOI URL PMID |
[37] |
Y.-Y. Yang, Hui-Hui Chia, T.-S. Chung, J. Control. Release. 69 (2000) 81-96.
DOI URL PMID |
[38] |
H. Zhang, C. Pu, Q. Wang, X. Tan, J. Gou, H. He, Y. Zhang, T. Yin, Y. Wang, X. Tang, Pharm. Res. 36 (2018) 9.
DOI URL PMID |
[39] |
S. Fredenberg, M. Wahlgren, M. Reslow, A. Axelsson, Int. J. Pharm. 415 (2011) 34-52.
DOI URL PMID |
[1] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
[2] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[3] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
[4] | Ruifang Gao, Jin Li, Rui Shi, Yang Zhang, Fuzhou Ouyang, Ting Zhang, Lihua Hu, Guoqiang Xu, Jian Liu. Highly sensitive detection of phosphopeptides with superparamagnetic Fe3O4@mZrO2 core-shell microspheres-assisted mass spectrometry [J]. J. Mater. Sci. Technol., 2020, 59(0): 234-242. |
[5] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
[6] | Liu Weigang,Xu Yingming,Zhou Wei,Zhang Xianfa,Cheng Xiaoli,Zhao Hui,Gao Shan,Huo Lihua. A Facile Synthesis of Hierarchically Porous TiO2 Microspheres with Carbonaceous Species for Visible-light Photocatalysis [J]. J. Mater. Sci. Technol., 2017, 33(1): 39-46. |
[7] | Wen Cai, Yinsheng Zhao, Jie Hu, Jiasong Zhong, Weidong Xiang. Solvothermal Synthesis and Characterization of Zinc Indium Sulfide Microspheres [J]. J Mater Sci Technol, 2011, 27(6): 559-562. |
[8] | Liang Ni, Lei Wang, Bing Shao, Yinjue Wang, Wenli Zhang, Yong Jiang. Synthesis of Flower-like Zinc Oxalate Microspheres in Ether-water Bilayer Refluxing Systems and Their Conversion to Zinc Oxide Microspheres [J]. J Mater Sci Technol, 2011, 27(6): 563-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||