J. Mater. Sci. Technol. ›› 2021, Vol. 63: 145-160.DOI: 10.1016/j.jmst.2020.02.057
• Research Article • Previous Articles Next Articles
Haiyue Zu1, Kelvin Chau2, Temitope Olumide Olugbade3, Lulu Pan3, Chris Halling Dreyer1,4, Dick Ho-Kiu Chow1, Le Huang1, Lizhen Zheng1, Wenxue Tong1, Xu Li1, Ziyi Chen1, Xuan He1, Ri Zhang1, Jie Mi1, Ye Li1, Bingyang Dai1, Jiali Wang1, Jiankun Xu1, Kevin Liu2, Jian Lu3, Ling Qin1,5,*()
Received:
2019-11-20
Revised:
2020-01-13
Accepted:
2020-02-11
Published:
2021-02-10
Online:
2021-02-15
Contact:
Ling Qin
About author:
*Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong Special Administrative Region.E-mail address: lingqin@cuhk.edu.hk (L. Qin).Haiyue Zu, Kelvin Chau, Temitope Olumide Olugbade, Lulu Pan, Chris Halling Dreyer, Dick Ho-Kiu Chow, Le Huang, Lizhen Zheng, Wenxue Tong, Xu Li, Ziyi Chen, Xuan He, Ri Zhang, Jie Mi, Ye Li, Bingyang Dai, Jiali Wang, Jiankun Xu, Kevin Liu, Jian Lu, Ling Qin. Comparison of modified injection molding and conventional machining in biodegradable behavior of perforated cannulated magnesium hip stents[J]. J. Mater. Sci. Technol., 2021, 63: 145-160.
Fig. 2. Morphology of the cannulated Mg stents. (a) Macroscopic photos in side view; (b) Macroscopic photos in cross-sectional view (left: machining; right: molding).
Fig. 3. Microstructure of cannulated Mg stents fabricated by machining and molding before degradation: (a) XRD spectra, (b) Reconstructed micro CT images showing porosity.
Fig. 7. Changes in (a) weight loss rate, accumulated concentration of (b) Mg, (c) Ca and (d) P ion release of the machining and molding with paraffin-filling as well as their respective non-filling counterparts in SBF solution at 37 °C.
Fig. 8. Potentiodynamic polarization curves of the machining and molding with paraffin-filling as well as their respective non-filling counterparts in (a) SBF and (b) αMEM solution at 37 ℃.
Fig. 9. Surface SEM scanning of Mg stents fabricated by molding and machining processes after soaked in SBF solution and magnified at (a) 80 times, (b) 200 times and (c) 3000 times, respectively.
Fig. 10. EDS mapping of cannulated Mg stents fabricated by (a) machining for 90 days and (b) molding for 7 days after soaked in SBF solution from surface view magnifying at 3000 times.
Fig. 11. Cross sectional SEM scanning of Mg stents fabricated by molding and machining processes after soaked in SBF solution and magnified at (a) 80 times, (b) 200 times and (c) 3000 times, respectively.
Fig. 12. EDS mapping of cannulated Mg stents fabricated by (a) machining for 90 days and (b) molding for 7 days after soaked in SBF solution from cross-sectional view magnifying at 1000 times.
Fig. 13. Hemolysis ratio of the machining and molding with paraffin-filling as well as their respective non-filling counterparts. The upper dashed line denotes the hemolysis value of 5.0% according to the ISO 10993-4.
Fig. 14. Two cell models for evaluating cytotoxicity effect of the machining and molding with paraffin-filling as well as their respective non-filling counterparts: (a) in vitro cytotoxicity test showing osteoblast cultured with primary and 8 times-diluted Mg extracts, (b) in vitro live/dead staining showing osteoblast cultured under the exposure of Transwell insert with the presence of Mg disks.
Fig. 15. Migration assay of osteoblasts under direct culture with Mg disks to mimic in vivo application (Red dotted line: the interface between implants and osteoblasts at initial stage; White arrow: implants located region).
Fig. 16. Schematic diagram of the formation of the apatite deposition layer and degradation process on cannulated Mg stents fabricated by (a) machining and (b) molding, respectively.
[1] |
S. Kamrani, C. Fleck, Biometals 32 (2019) 185-193.
DOI URL PMID |
[2] |
D.W. Zhao, F. Witte, F.Q. Lu, J.L. Wang, J.L. Li, L. Qin, Biomaterials 112 (2017) 287-302.
DOI URL PMID |
[3] |
M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina, Journal of functional biomaterials. (2017) 8.
URL PMID |
[4] |
H.Y. Zu, X.T. Yi, D.W. Zhao, Molecular Medicine Reports. 18 (2018) 749-762.
DOI URL PMID |
[5] |
D.W. Zhao, S.B. Huang, F.Q. Lu, et al., Biomaterials. 81 (2016) 84-92.
DOI URL PMID |
[6] | J.W. Lee, H.S. Han, K.J. Han, et al., Proceedings of the National Academy of Sciences of the United States Of America 113 (2016) 716-721. |
[7] |
H. Windhagen, K. Radtke, A. Weizbauer, et al., Biomedical Engineering Online. 12 (2013) 62.
DOI URL PMID |
[8] |
X.B. Yu, D.W. Zhao, S.B. Huang, et al., Bmc Musculoskeletal Disorders. 16 (2015) 329-335.
DOI URL PMID |
[9] | C.Y. Zhao, X.H. Chen, F.S. Pan, et al., Journal of Materials Science & Technology. 35 (2019) 142-150. |
[10] |
A. Abbas, D. Pimenov, I. Erdakov, M. Taha, M. Soliman, M. El Rayes, Materials 11 (2018) 5.
DOI URL |
[11] |
S. Bruschi, R. Bertolini, A. Ghiotti, E. Savio, W. Guo, R. Shivpuri, Cirp Annals-Manufacturing Technology. 67 (2018) 579-582.
DOI URL |
[12] | A. Maskara, Machining Magnesium Datasheet 254, 2018, December 1 https://www.luxfermeltechnologies.com/. |
[13] |
Y. Liu, S.L. Cai, L.H. Dai, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 651 (2016) 878-885.
DOI URL |
[14] |
M. Wolff, J.G. Schaper, M.R. Suckert, et al., Metals. 6 (2016) 118-130.
DOI URL |
[15] | J.L. Johnson, D.F. Heaney, N.S. Myers, Cambridge, 2019, pp. 535. |
[16] |
B. Mansoor, S. Mukherjee, A. Ghosh, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 512 (2009) 10-18.
DOI URL |
[17] |
K. Shidara, G. Mohan, Y.A. Lay, K.J. Jepsen, W. Yao, N.E. Lane, Journal of Orthopaedic Translation. 16 (2019) 91-101.
DOI URL PMID |
[18] |
K.C. Hua, X.G. Yang, J.T. Feng, et al., Journal of Orthopaedic Surgery and Research. 14 (2019) 306-320.
DOI URL PMID |
[19] |
H.J. Cao, H.F. Guan, Y.X. Lai, L. Qin, X.L. Wang, Journal of Orthopaedic Translation. 4 (2016) 57-70.
DOI URL PMID |
[20] |
Q. Cheng, J.L. Tang, J.J. Gu, et al., Bmc Musculoskeletal Disorders. 19 (2018) 289-297.
DOI URL PMID |
[21] | F.S. Santori, N. Santori, A. Piccinato, Milan, 2004, pp. 87. |
[22] | ISO 10993-12, Biological evaluation of medical devices: Sample preparation and reference material, 2012, July 1 https://www.iso.org. |
[23] | ISO 23317, Implants for surgery - In vitro evaluation for apatite-forming ability of implants material, 2014, June 1 https://www.iso.org. |
[24] | S. Brundavanam, G.R. Eddy, D. Fawcett, American Journal of Biomedical Engineering. 4 (2014) 79-87. |
[25] | H.J. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Journal of Materials Research and Technology-Jmr&T. 4 (2015) 18-25. |
[26] | ISO 10993-10994, Biological evaluation of medical devices: Selection of tests for interaction with blood, 2012, July 1 https://www.iso.org. |
[27] |
J.L. Wang, F. Witte, T.F. Xi, et al., Acta Biomaterialia. 21 (2015) 237-249.
DOI URL PMID |
[28] |
N. Parekh, C. Hushye, S. Warunkar, S.S. Gupta, A. Nisal, Rsc Advances. 7 (2017) 26551.
DOI URL |
[29] |
T. Olugbade, C. Liu, J. Lu, Adv. Eng. Mater. 21 (2019), 1900125.
DOI URL |
[30] |
T. Olugbade, J. Lu, Anal. Lett. 52 (2019) 2454-2471.
DOI URL |
[31] |
T. Olugbade, J. Lu, J Bio Tribo Corros. 5 (2019) 38.
DOI URL |
[32] |
T. Olugbade, Data-in-brief. 25 (2019) 104033.
DOI URL PMID |
[33] |
X.D. Chen, Journal of Orthopaedic Translation. 10 (2017) 1-4.
DOI URL PMID |
[34] | S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Materials Science & Engineering C-Materials for Biological Applications. 68 (2016) 948-963. |
[35] | P. Wan, L.L. Tan, K. Yang, Journal of Materials Science & Technology. 32 (2016) 827-834. |
[36] |
J.G. Schaper, M. Wolff, B. Wiese, T. Ebel, R. Willumeit-Roemer, Journal of Materials Processing Technology. 267 (2019) 241-246.
DOI URL |
[37] |
K.U. Kainer, T. Ebel, O.M. Ferri, et al., Powder Metallurgy. 55 (2012) 315-321.
DOI URL |
[38] |
L. Li, M. Zhang, Y. Li, J. Zhao, L. Qin, Y.X. Lai, Regenerative Biomaterials 4 (2017) 129-137.
DOI URL |
[39] | R.J. Sun, Y.C. Guan, Y. Zhu, Modern Chemistry & Applications. 3 (2015) 153-156. |
[40] | L.Y. He, X.M. Zhang, B. Liu, Y. Tian, W.H. Ma, Brazilian Journal of Medical &Biological Research. 49 (2016) 5257-5263. |
[41] |
X.Z. Zhang, H.Y. Zu, D.W. Zhao, et al., Acta Biomaterialia. 63 (2017) 369-382.
DOI URL PMID |
[42] |
Q.M. Tian, M. Deo, L. Rivera-Castaneda, H. Liu, Acs Biomaterials Science & Engineering. 2 (2016) 1559-1571.
DOI URL PMID |
[43] |
M. Vlcek, F. Lukac, H. Kudrnova, et al., Materials (Basel). 10 (2017) 55.
DOI URL |
[44] |
Y. Chen, J.H. Dou, H.J. Yu, C.Z. Chen, J. Biomater. Appl. 33 (2019) 1348-1372.
DOI URL PMID |
[45] | D. Persaud-Sharma, A. McGoron, J. Biomim, Biomater. Tissue. Eng. 12 (2012) 25-39. |
[1] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[2] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
[3] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[4] | Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50(0): 257-270. |
[5] | Shi Jin, Dan Zhang, Xiaopeng Lu, Yang Zhang, Lili Tan, Ying Liu, Qiang Wang. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys [J]. J. Mater. Sci. Technol., 2020, 47(0): 190-201. |
[6] | H. Guo, R.H. Cao, Y.F. Zheng, J. Bai, F. Xue, C.L. Chu. Diameter-dependent in vitro performance of biodegradable pure zinc wires for suture application [J]. J. Mater. Sci. Technol., 2019, 35(8): 1662-1670. |
[7] | Zheng Wang, Qingke Zhang, Robabeh Bagheri, Pushan Guo, Yirong Yao, Lijing Yang, Zhenlun Song. Influence of laser surface remelting on microstructure and degradation mechanism in simulated body fluid of Zn-0.5Zr alloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2705-2713. |
[8] | Yiyuan Kang, Beining Du, Yueming Li, Baojie Wang, Liyuan Sheng, Longquan Shao, Yufeng Zheng, Tingfei Xi. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment [J]. J. Mater. Sci. Technol., 2019, 35(1): 6-18. |
[9] | Changgang Wang, Liping Wu, Fang Xue, Rongyao Ma, Ini-Ibehe Nabuk Etim, Xuehui Hao, Junhua Dong, Wei Ke. Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions [J]. J. Mater. Sci. Technol., 2018, 34(10): 1876-1884. |
[10] | Chen Shanshan, Tan Lili, Zhang Bingchun, Xia Yonghui, Xu Ke, Yang Ke. In Vivo Study on Degradation Behavior and Histologic Response of Pure Magnesium in Muscles [J]. J. Mater. Sci. Technol., 2017, 33(5): 469-474. |
[11] | Wan Peng,Tan Lili,Yang Ke. Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability: A Review [J]. J. Mater. Sci. Technol., 2016, 32(9): 827-834. |
[12] | Chen Bin,Yin Kai-Yang,Lu Tian-Feng,Sun Bing-Yi,Dong Qing,Zheng Jing-Xu,Lu Chen,Li Zhan-Chun. AZ91 Magnesium Alloy/Porous Hydroxyapatite Composite for Potential Application in Bone Repair [J]. J. Mater. Sci. Technol., 2016, 32(9): 858-864. |
[13] | Hou Lida,Li Zhen,Zhao Hong,Pan Yu,Pavlinich Sergey,Liu Xiwei,Li Xinlin,Zheng Yufeng,Li Li. Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of As-Extruded Biodegradable Mg-3Sn-1Zn-0.5Mn Alloy [J]. J. Mater. Sci. Technol., 2016, 32(9): 874-882. |
[14] | Wang C.,Yang H.T.,Li X.,Zheng Y.F.. In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals [J]. J. Mater. Sci. Technol., 2016, 32(9): 909-918. |
[15] | Wang Chang,Yu Zhentao,Cui Yajun,Zhang Yafeng,Yu Sen,Qu Gongqi,Gong Haibo. Processing of a Novel Zn Alloy Micro-Tube for Biodegradable Vascular Stent Application [J]. J. Mater. Sci. Technol., 2016, 32(9): 925-929. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||