J. Mater. Sci. Technol. ›› 2021, Vol. 61: 100-113.DOI: 10.1016/j.jmst.2020.05.048
• Research Article • Previous Articles Next Articles
Lei Luoa, Liangshun Luoa,*(), Robert O. Ritchieb, Yanqing Sua,*(
), Binbin Wanga, Liang Wanga, Ruirun Chena, Jingjie Guoa, Hengzhi Fua
Received:
2020-03-23
Revised:
2020-04-27
Accepted:
2020-05-24
Published:
2021-01-20
Online:
2021-01-20
Contact:
Liangshun Luo,Yanqing Su
Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification[J]. J. Mater. Sci. Technol., 2021, 61: 100-113.
Fig. 1. Schematic diagrams of experiment and the selection of samples. (a) Equipment for the coupling of TMF with sequential solidification. (b) The selection of experimental samples and simulated models.
Parameters | Symbol | Value |
---|---|---|
TMF inner diameter | Di, mm | 40 |
TMF outer diameter | Do, mm | 120 |
Number of windings | n | 330 |
Current frequency | f, Hz | 50 |
Phase sequence | - | Down-TMF: 0, 2π/3, 4π/3; |
Up-TMF: 4π/3, 2π/3, 0 | ||
Maximum electric current | I0, A | 24 |
Effective electric current | Ie, A | 17 |
Temperature gradient | GT, K mm-1 | 2 |
Cooling rate of alloys | vc, K s-1 | 0.3 |
Thermal Conductivity | CT, W mK-1 | 236 |
Magnetic permeability | μAl, H m-1 | 1 |
Viscosity coefficient | ?, Pa·s | 0.00125 |
Electrical conductance | σ, S m-1 | 35.3e+6 |
Latent heat | Lm, kJ kg-1 | 396.1 |
Table 1 Related characteristics of the TMF generator and the parameters used in the calculations of TMF and flow fields [35,36].
Parameters | Symbol | Value |
---|---|---|
TMF inner diameter | Di, mm | 40 |
TMF outer diameter | Do, mm | 120 |
Number of windings | n | 330 |
Current frequency | f, Hz | 50 |
Phase sequence | - | Down-TMF: 0, 2π/3, 4π/3; |
Up-TMF: 4π/3, 2π/3, 0 | ||
Maximum electric current | I0, A | 24 |
Effective electric current | Ie, A | 17 |
Temperature gradient | GT, K mm-1 | 2 |
Cooling rate of alloys | vc, K s-1 | 0.3 |
Thermal Conductivity | CT, W mK-1 | 236 |
Magnetic permeability | μAl, H m-1 | 1 |
Viscosity coefficient | ?, Pa·s | 0.00125 |
Electrical conductance | σ, S m-1 | 35.3e+6 |
Latent heat | Lm, kJ kg-1 | 396.1 |
No. | Al, wt. % | Cu, wt. % | Ie, A | TMF | vd, μm·s-1 |
---|---|---|---|---|---|
1 | Bal | 4.99 | 17 | Up-TMF | 150 |
2 | Bal | 5.00 | 0 | No-TMF | 150 |
3 | Bal | 4.99 | 17 | Down-TMF | 150 |
Table 2 Preparation process of different samples and actual chemical compositions measured by XPS.
No. | Al, wt. % | Cu, wt. % | Ie, A | TMF | vd, μm·s-1 |
---|---|---|---|---|---|
1 | Bal | 4.99 | 17 | Up-TMF | 150 |
2 | Bal | 5.00 | 0 | No-TMF | 150 |
3 | Bal | 4.99 | 17 | Down-TMF | 150 |
Fig. 2. Images of each slice along the radial direction taken by 3D-CT. Higher brightness in the images indicate the regions with higher content of Cu. With respect to microstructure, the green represents the Cu-containing precipitates, while the black within green represents the primary dendritic α-Al. Circle I in (b) indicates the accumulation of Cu. Circle II in (b) indicates the deflection of the primary α-Al dendrites.
Fig. 4. The composition and content of precipitation phases. XRD maps of the (a) transverse and (b) longitudinal sections of the solidified samples. (c) The content statistics for the matrix phase α-Al and precipitation phase Al2Cu, as measured by EBSD.
Crystal face index | Samples | |||
---|---|---|---|---|
No-TMF | Up-TMF | Down-TMF | ||
(200)Al | θ, degree | 44.781 | 44.779 | 45.040 |
a, nm | 0.40444 | 0.40446 | 0.40222 | |
Smax, at. % | 0.6019 | 0.5555 | 5.7407 | |
(111)Al | θ, degree | 38.555 | 38.555 | 38.817 |
a, nm | 0.40410 | 0.40412 | 0.40149 | |
Smax, at. % | 1.3889 | 1.3426 | 7.4306 |
Table 3 Related results of the crystal structural evolution on the (200)Al and (111)Al crystal planes derived from the XRD data.
Crystal face index | Samples | |||
---|---|---|---|---|
No-TMF | Up-TMF | Down-TMF | ||
(200)Al | θ, degree | 44.781 | 44.779 | 45.040 |
a, nm | 0.40444 | 0.40446 | 0.40222 | |
Smax, at. % | 0.6019 | 0.5555 | 5.7407 | |
(111)Al | θ, degree | 38.555 | 38.555 | 38.817 |
a, nm | 0.40410 | 0.40412 | 0.40149 | |
Smax, at. % | 1.3889 | 1.3426 | 7.4306 |
Fig. 5. Microstructural energy spectrum analysis measured in cross-sections of different samples. The red circles in (a), (b) and (c) represent the energy spectrum points. (d) The variation in Pma, Pws and Pma/Pws, the corresponding values of each energy spectrum test point, which represent the concentration of Cu in the matrix, the concentration of Cu in the whole section and the relative solubility ratio, respectively.
Processing | Cu wt.% | |||||
---|---|---|---|---|---|---|
Whole section | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | |
Down-TMF | 4.95 | 2.87 | 2.87 | 2.81 | 2.80 | 2.86 |
No-TMF | 4.97 | 2.43 | 2.66 | 2.60 | 2.46 | 2.47 |
Up-TMF | 4.97 | 1.75 | 1.81 | 2.01 | 1.92 | 1.87 |
Table 4 EDS results for Cu element in the whole sectiona and at each pointb (a “Whole section” refers to the weight percent of Cu in all areas of the microstructural images. b “Point” refers to the weight percent of Cu at each energy spectrum test point in the matrix phase α-Al.).
Processing | Cu wt.% | |||||
---|---|---|---|---|---|---|
Whole section | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | |
Down-TMF | 4.95 | 2.87 | 2.87 | 2.81 | 2.80 | 2.86 |
No-TMF | 4.97 | 2.43 | 2.66 | 2.60 | 2.46 | 2.47 |
Up-TMF | 4.97 | 1.75 | 1.81 | 2.01 | 1.92 | 1.87 |
Fig. 6. Related statistical results of the as-cast microstructural morphologies. (a) The measuring method used to calculate the PDAS using Image-Pro software. The p1, p2 and p3 in (a) denote the PDAS value in the tangential, diagonal and radial directions, respectively. (b) Results of the measurements of the PDAS. (c) The dendrite sizes in the α-Al phase, as measured by EBSD. (d) Deviation angles for the growth direction of α-Al in the direction of temperature gradient, again measured by EBSD.
Fig. 7. Statistical results of the crystal orientation measurements of the α-Al phase determined by EBSD. The “a”, “b” and “c” stand for the results of Up-TMF, No-TMF and Down-TMF respectively. The numbers “1”, “2” and “3” denote the serial number of photos. (a1), (b1), and (c1) are the IQ images of EBSD maps. (a2), (b2), and (c2) are the corresponding <001> - inverse pole figures. (a3), (b3), and (c3) are the corresponding <001> - pole figures.
Fig. 8. Performance testing results. (a) Stress-strain curves. (b) Performance statistics. (c), (d) and (e) are scanning fractograph for No-TMF, Up-TMF and Down-TMF, respectively.
Fig. 9. The distribution of temperatures and melt flows at different times with the flow velocities after 0.6 s with No-TMF processing. The black arrows indicate the directions of the melt flow.
Fig. 10. The distribution of temperature and melt flows at different times with the flow velocities after 0.6 s with Up-TMF processing. The white arrows indicate the directions of the melt flow.
Fig. 11. The distribution of temperatures and melt flow at different times with the flow velocities after 0.6 s with Down-TMF processing. The white arrows indicate the directions of the melt flows.
Fig. 12. Schematic diagrams of solidification process under different conditions. (a) Solidification path models. (b) Phase diagram curves. Lines 1, Lines 2 and Lines 3 in.(b) are the equivalent phase diagram curves of No-TMF, Up-TMF and Down-TMF, respectively. (c) Distributions of solutes and temperatures at the solid-liquid interface. In (c), S refers to solid phase, L refers to liquid phase, T is the melting point, N is the position of solid-liquid interface, x is the position of the alloy melt distant from the solid-liquid interface and C0, CL, and CS are, respectively, the solute concentration of the initial, liquid and solid states.
Fig. 13. Schematic diagrams showing the mechanisms for different TMF processes coupled with sequential solidification. The purple circles are the solute enriched at the solidification front. The red squares are the latent heat generated at the solidification front. “HTZ” denotes a higher temperature zone. The purple and black arrows in (a) (b) and (c) represent melt flows.
[1] |
W.W. Mullins, R. Sekerka, J. Appl. Phys. 35 (1964) 444-451.
DOI URL |
[2] |
J.M. Rosalie, L. Bourgeois, Acta Mater. 60 (2012) 6033-6041.
DOI URL |
[3] |
L. Gao, X. Ou, S. Ni, K. Li, Y. Du, M. Song, Mater. Sci. Eng., A 762 (2019), 138091.
DOI URL |
[4] |
G. Liu, J. Sun, C.-W. Nan, K.-H. Chen, Acta Mater. 53 (2005) 3459-3468.
DOI URL |
[5] |
J. Rutter, B. Chalmers, Can. J. Phys. 31 (1953) 15-39.
DOI URL |
[6] |
W. Tiller, K. Jackson, J. Rutter, B. Chalmers, Acta Metall. 1 (1953) 428-437.
DOI URL |
[7] |
Z. Gao, W. Jie, Y. Liu, H. Luo, Acta Mater. 127 (2017) 277-286.
DOI URL |
[8] |
P. Lee, J. Hunt, Acta Mater. 49 (2001) 1383-1398.
DOI URL |
[9] |
I. Ferreira, C. Siqueira, C. Santos, A. Garcia, Scr. Mater. 49 (2003) 339-344.
DOI URL |
[10] |
H. Elhadari, H. Patel, D. Chen, W. Kasprzak, Mater. Sci. Eng., A 528 (2011) 8128-8138.
DOI URL |
[11] |
E.E. Obaldia, S. Felicelli, J. Mater. Process. Technol. 191 (2007) 265-269.
DOI URL |
[12] | D.A. Lados, D. Apelian, Mater. Sci. Eng., A 385 (2004) 200-211. |
[13] |
H. Meidani, J.L. Desbiolles, A. Jacot, M. Rappaz, Acta Mater. 60 (2012) 2518-2527.
DOI URL |
[14] |
J. Delahaye, J.T. Tchuindjang, J. Lecomte-Beckers, O. Rigo, A. Habraken, A. Mertens, Acta Mater. 175 (2019) 160-170.
DOI URL |
[15] |
H. Neumann-Heyme, K. Eckert, C. Beckermann, Acta Mater. 140 (2017) 87-96.
DOI URL |
[16] | J.A. Spittle, Int. J. Cast Met.Res. 19 (2006) 210-222. |
[17] |
X. Li, Q. Cai, B. Zhao, Y. Xiao, B. Li, J. Alloys Compd. 675 (2016) 201-210.
DOI URL |
[18] |
H. Liu, Y. Gao, L. Qi, Y. Wang, J.F. Nie, Metall. Mater. Trans. A 46 (2015) 3287-3301.
DOI URL |
[19] |
D.V. Alexandrov, P.K. Galenko, Phys. Usp. 57 (2014) 771.
DOI URL |
[20] |
S. Liu, D. Zhang, J. Xiong, C. Chen, T. Song, L. Liu, S. Huang, J. Alloys Compd. 781 (2019) 873-882.
DOI URL |
[21] |
X. Zhang, L. Huang, B. Zhang, Y. Chen, S. Duan, G. Liu, C. Yang, F. Liu, Mater. Sci. Eng. A 753 (2019) 168-178.
DOI URL |
[22] |
J. Gao, M. Han, A. Kao, K. Pericleous, D.V. Alexandrov, P.K. Galenko, Acta Mater. 103 (2016) 184-191.
DOI URL |
[23] |
H. Wei, F. Xia, S. Qian, M. Wang, J. Mater. Process. Technol. 240 (2017) 344-353.
DOI URL |
[24] |
F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, T. Connolley, Acta Mater. 141 (2017) 142-153.
DOI URL |
[25] |
C. Lin, S. Wu, S. Lü, P. An, L. Wan, J. Alloys Compd. 568 (2013) 42-48.
DOI URL |
[26] |
M.H. Avnaim, B. Mikhailovich, A. Azulay, A. Levy, Int. J. Heat Fluid Flow 69 (2018) 9-22.
DOI URL |
[27] |
K. Zhang, Y. Li, Y. Yang, J. Mater. Sci. Technol. 48 (2020) 9-17.
DOI URL |
[28] |
Y. Zhao, K. Wang, S. Yuan, Y. Ma, G. Li, Q. Wang, J. Mater. Sci. Technol. 46 (2020) 127-135.
DOI URL |
[29] |
E. Liotti, A. Lui, S. Kumar, Z. Guo, C. Bi, T. Connolley, P. Grant, Acta Mater. 121 (2016) 384-395.
DOI URL |
[30] | R. Mathiesen, L. Arnberg, P. Bleuet, A. Somogyi, Metall. Mater. Trans. A 37 (2006) 2515-2524. |
[31] |
G. Zimmermann, C. Pickmann, M. Hamacher, E. Schaberger-Zimmermann, H. Neumann-Heyme, K. Eckert, S. Eckert, Acta Mater. 126 (2017) 236-250.
DOI URL |
[32] |
D. Ruvalcaba, R. Mathiesen, D. Eskin, L. Arnberg, L. Katgerman, Acta Mater. 55 (2007) 4287-4292.
DOI URL |
[33] |
M.H. Avnaim, B. Mikhailovich, A. Azulay, A. Levy, Int. J. Heat Fluid Flow 69 (2018) 23-32.
DOI URL |
[34] |
K. Dadzis, G. Lukin, D. Meier, P. Bönisch, L. Sylla, O. Patzold, J. Cryst. Growth 445 (2016) 90-100.
DOI URL |
[35] |
Z.Y. Li, X.F. Qi, L.J. Liu, G.S. Zhou, J. Cryst. Growth 484 (2018) 78-85.
DOI URL |
[36] |
P. Schwesig, M. Hainke, J. Friedrich, G. Mueller, J. Cryst. Growth 266 (2004) 224-228.
DOI URL |
[37] |
H. Yan, T. Gao, H. Zhang, J. Nie, X. Liu, J. Mater. Sci. Technol. 35 (2019) 374-382.
DOI URL |
[38] |
X. Yang, J. Zhu, W. Li, J. Mater. Sci. Technol. 31 (2015) 1320-1328.
DOI URL |
[39] |
B. Lin, R. Xu, H. Li, W. Zhang, J. Mater. Sci. Technol. 34 (2018) 1447-1459.
DOI URL |
[40] |
Y. Kaygisiz, N. Marasli, J. Alloys Compd. 721 (2017) 764-771.
DOI URL |
[41] |
E. Cadirli, Met. Mater. Int. 19 (2013) 411-422.
DOI URL |
[42] |
S. Xi, K. Zuo, X. Li, G. Ran, J. Zhou, Acta Mater. 56 (2008) 6050-6060.
DOI URL |
[43] |
H. Lipson, Contemp. Phys. 20 (1979) 87-88.
DOI URL |
[44] | P.T. Dawson, S.A. Petrone, Surf. Sci. 152 (1985) 925-931. |
[45] | N.J. Petch, J. Iron Steel Inst. 174 (1953) 25-28. |
[46] |
E.O. Hall, Proc. Phys. Soc. B 64 (1951) 747.
DOI URL |
[47] |
C.J. Li, Z.M. Ren, W.L. Ren, Y.Q. Wu, Trans. Nonferrous Met. Soc. China 22 (2012) s1-s6.
DOI URL |
[48] |
X. Li, A. Gagnoud, Y. Fautrelle, Z. Ren, R. Moreau, Y. Zhang, C. Esling, Acta Mater. 60 (2012) 3321-3332.
DOI URL |
[49] |
E. Liotti, A. Lui, S. Kumar, Z. Guo, C. Bi, T. Connolley, P.S. Grant, Acta Mater. 121 (2016) 384-395.
DOI URL |
[50] |
A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, Y. Fautrelle, Metall. Mater. Trans. B 41 (2009) 193-208.
DOI URL |
[51] |
A.T. Richardson, J. Fluid Mech. 63 (2006) 593-605.
DOI URL |
[52] |
N. Rott, Annu. Rev. Fluid Mech. 22 (1990) 1-12.
DOI URL |
[53] |
T. Hou, Z. Li, K. Wu, H. Lin, Y. Li, G. Zhang, W. Liu, Acta Mater. 167 (2019) 71-79.
DOI URL |
[54] |
R. Xin, K. Wu, G. Zhang, T. Hou, G. Ma, W. Qiao, H. Zhao, J. Mater. Sci. Technol. 34 (2018) 786-793.
DOI URL |
[55] |
B. Dong, T. Hou, K. Wu, Z. You, Z. Li, G. Zhang, H. Lin, Mater. Lett. 240 (2019) 66-68.
DOI URL |
[56] |
T. Kakeshita, T. Saburi, K. Kindo, S. Endo, J. Appl. Phys. 36 (1997) 7083.
DOI URL |
[57] |
D. Medvedev, T. Fischaleck, K. Kassner, J. Cryst. Growth 303 (2007) 69-73.
DOI URL |
[58] |
Y. Xu, D. Casari, Q. Du, R.H. Mathiesen, L. Arnberg, Y. Li, Acta Mater. 140 (2017) 224-239.
DOI URL |
[59] |
L. Wang, W. Lu, Q. Hu, M. Xia, Y. Wang, J. Li, Acta Mater. 139 (2017) 75-85.
DOI URL |
[60] |
Y. Dong, S. Shuai, T. Zheng, J. Cao, C. Chen, J. Wang, Z. Ren, J. Mater. Sci. Technol. 39 (2020) 113-123.
DOI URL |
[61] |
Y. Zhao, B. Zhang, H. Hou, W. Chen, M. Wang, J. Mater. Sci. Technol. 35 (2019) 1044-1052.
DOI URL |
[62] |
P. Rudolph, J. Cryst. Growth 310 (2008) 1298-1306.
DOI URL |
[63] |
Y. Xu, D. Casari, R.H. Mathiesen, Y. Li, Acta Mater. 149 (2018) 312-325.
DOI URL |
[64] |
Y. Wang, S. Li, Z. Liu, H. Zhong, L. Xu, H. Xing, J. Mater. Sci. Technol. 35 (2019) 1309-1314.
DOI URL |
[65] |
Y. Zhang, X. Miao, Z. Shen, Q. Han, C. Song, Q. Zhai, Acta Mater. 97 (2015) 357-366.
DOI URL |
[66] |
Z. Gao, W. Jie, Y. Liu, Y. Zheng, H. Luo, J. Alloys Compd. 797 (2019) 514-522.
DOI URL |
[67] | H. He, Y. Yi, S. Huang, Y. Zhang, J. Mater. Sci. Technol. 35 (2019) 55-63. |
[1] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||