J. Mater. Sci. Technol. ›› 2020, Vol. 43: 44-51.DOI: 10.1016/j.jmst.2020.01.021
• Research Article • Previous Articles Next Articles
Jo Min Chula, Jisung Yooa, Jo Min Cheola, Alireza Zargaranb, Sohn Seok Suc*(), Kim Nack J.b, Sunghak Leea*(
)
Received:
2019-08-02
Accepted:
2019-09-24
Published:
2020-04-15
Online:
2020-04-26
Contact:
Su Sohn Seok,Lee Sunghak
Jo Min Chul, Jisung Yoo, Jo Min Cheol, Alireza Zargaran, Sohn Seok Su, Kim Nack J., Sunghak Lee. Effects of Cu addition on formability and surface delamination phenomenon in high-strength high-Mn steels[J]. J. Mater. Sci. Technol., 2020, 43: 44-51.
Fig. 2. SEM backscattered-electron (BE) images of the (a) 0Cu, (b) 1Cu and (c) 2Cu steels. (d) The EDS line profile data of the 2Cu steel along the red line in (c).
Fig. 3. (a) SEM BE image in the high-(Mn,Cu) band of the 2Cu steel. Cuboidal particles are densely formed along the high-(Mn,Cu) band. (b) TEM bright-field (BF) image, selected-area diffraction pattern along [233] zone axis, and quantitative EDS data of the particles. These particles are identified to be Cu-rich FCC-phase particles.
Fig. 5. EBSD image quality (IQ) + phase maps of the 20 %-strained (a) 0Cu, (b) 1Cu, and (c) 2Cu steels. In the 0Cu and 1Cu steels, transformed α’- and ε-martensite are observed along the longitudinal direction, whereas they are not in the 2Cu steel.
Fig. 6. Optical photographs of the tensile-fractured specimens for the (a) 0Cu, (b) 1Cu, and (c) 2Cu steels. A delamination is found in the specimen surface of 1Cu steel, and becomes severe in the 2Cu steel. This delamination occurs mainly along the longitudinal direction, and is deepened into the interior up to about 0.1 mm in the 2Cu steel.
Steel | 0Cu | 1Cu | 2Cu |
---|---|---|---|
HER (%) | 36.67 ± 1.31 | 58.05 ± 2.83 | 49.47 ± 3.73 |
Table 1 Hole-expansion ratio (HER) data of the 0Cu, 1Cu, and 2Cu steels.
Steel | 0Cu | 1Cu | 2Cu |
---|---|---|---|
HER (%) | 36.67 ± 1.31 | 58.05 ± 2.83 | 49.47 ± 3.73 |
Steel | εpost | $\bar{r}$ | ???Δr? | n |
---|---|---|---|---|
0Cu | 0.23 % | 1.068 | 0.093 | 0.341 |
1Cu | 1.08 % | 1.060 | 0.067 | 0.415 |
2Cu | 3.14 % | 1.056 | 0.072 | 0.395 |
Table 2 Post elongation (εpost), normal anisotropy ($\bar{r}$), planar anisotropy (???Δr?), and strain hardening exponent (n) of the 0Cu, 1Cu, and 2Cu steels.
Steel | εpost | $\bar{r}$ | ???Δr? | n |
---|---|---|---|---|
0Cu | 0.23 % | 1.068 | 0.093 | 0.341 |
1Cu | 1.08 % | 1.060 | 0.067 | 0.415 |
2Cu | 3.14 % | 1.056 | 0.072 | 0.395 |
Fig. 8. Photographs of the cup-drawn specimens of the (a) 0Cu, (b) 1Cu, and (c) 2Cu steels after the drawing test with a drawing ratio of 1.6. In the 0Cu steel, the drawing ratio of 1.6 is not satisfied because of the edge cracking. The 1Cu and 2Cu steels do not show any edge cracking, earing, or wrinkle. A severe surface delamination occurs on inner and outer cup-specimen surfaces of the 2Cu steel.
Fig. 9. SEM (a) secondary-electron (SE) and (b) BE images of a delaminated region on the tensile-fractured specimen of the 2Cu steel. The surface delamination propagates along the longitudinal direction. EPMA (c) Mn- and (d) Cu-distribution maps of the region corresponding to (a). The surface delamination occurs in the high-(Mn,Cu) band region, and that it is closely related to the formation of Cu-rich FCC-phase particles according to Fig. 2c, d.
|
[1] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[2] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[3] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
[4] | Bo Song, Qingshan Yang, Tao Zhou, Linjiang Chai, Ning Guo, Tingting Liu, Shengfeng Guo, Renlong Xin. Texture control by {10-12} twinning to improve the formability of Mg alloys: A review [J]. J. Mater. Sci. Technol., 2019, 35(10): 2269-2282. |
[5] | D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, G. Purcek. Formability of friction stir processed low carbon steels used in shipbuilding [J]. J. Mater. Sci. Technol., 2018, 34(1): 237-244. |
[6] | Di Hongshuang, Sun Qian, Wang Xiaonan, Li Jianping. Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding [J]. J. Mater. Sci. Technol., 2017, 33(12): 1561-1571. |
[7] | Jingren Dong, Dingfei Zhang, Jing Sun, Qingwei Dai, Fusheng Pan. Effects of Different Stretching Routes on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Sheets [J]. J. Mater. Sci. Technol., 2015, 31(9): 935-940. |
[8] | Wu Y., Wang H., Liu X.J., Chen X.H., Hui X.D., Zhang Y., Lu Z.P.. Designing Bulk Metallic Glass Composites with Enhanced Formability and Plasticity [J]. J. Mater. Sci. Technol., 2014, 30(6): 566-575. |
[9] | Guangsheng Huang,Wei Xu,Guangjie Huang,Hongcheng Li,Bo Song. Textural Evolution of AZ31B Magnesium Alloy Sheets Undergoing Repeated Unidirectional Bending at Room Temperature [J]. J Mater Sci Technol, 2009, 25(03): 365-369. |
[10] | M. Cheng,S.H. Zhang. Investigation of Micro Formability of Bulk Amorphous Alloy in the Supercooled Liquid State Based on Fluid Flow and Finite Element Analysis [J]. J Mater Sci Technol, 2009, 25(02): 277-280. |
[11] | Zhiqing XIONG, Xuemei YANG. Quantitative Evaluation for Drawability of Sheet Metal [J]. J Mater Sci Technol, 2005, 21(05): 763-766. |
[12] | Changli WANG, Kaifeng ZHANG. Superplastic Microforming of Zn-A122 Alloy Ribs [J]. J Mater Sci Technol, 2004, 20(02): 236-238. |
[13] | Peng LUO, Xiaolin WU, Kenong XIA. Equal Channel Angular Deformation (ECAD) of As-Cast AM60 Magnesium Alloy [J]. J Mater Sci Technol, 2003, 19(06): 513-515. |
[14] | Guancheng LI, Yonglin KANG. FEM Simulation of Bending Formability for Laminate Steel/Resin/Steel Lightweight Composite Sheet [J]. J Mater Sci Technol, 2003, 19(04): 324-326. |
[15] | Yung-Hung Chen, Shyong Lee, Jian-Yih Wang. Isothermal Gas Forming of Mg Alloy AZ31 Sheet [J]. J Mater Sci Technol, 2002, 18(03): 227-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||