J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (11): 1378-1385.DOI: 10.1016/j.jmst.2017.02.009
• Orginal Article • Previous Articles Next Articles
Zhao Chuanbaoab, Wang Yumina*(), Zhang Guoxinga, Yang Qinga, Zhang Xua, Yang Li_naa, Yang Ruia
Received:
2016-09-18
Revised:
2016-11-06
Accepted:
2016-11-09
Online:
2017-11-20
Published:
2018-01-25
Contact:
Wang Yumin
About author:
1 These two authors contributed equally to this paper.
Zhao Chuanbao, Wang Yumin, Zhang Guoxing, Yang Qing, Zhang Xu, Yang Li_na, Yang Rui. Effect of heat treatment on the microstructure and properties of CVD SiC fiber[J]. J. Mater. Sci. Technol., 2017, 33(11): 1378-1385.
Temperature (°C) | Duration (h) | ||||||
---|---|---|---|---|---|---|---|
900 | 100 | 200 | 500 | 1000 | |||
1000 | 10 | 20 | 50 | 120 | |||
1100 | 0.5 | 1 | 1.5 | 2 | 2.5 | 4 | 5 |
Table 1 Heat-treatment schemes for SiC fibers.
Temperature (°C) | Duration (h) | ||||||
---|---|---|---|---|---|---|---|
900 | 100 | 200 | 500 | 1000 | |||
1000 | 10 | 20 | 50 | 120 | |||
1100 | 0.5 | 1 | 1.5 | 2 | 2.5 | 4 | 5 |
Fig. 1. Weibull analysis of the tensile strength data of as-produced fibers: (a) probability of survival at different applied stress, (b) linear regression with a Weibull modulus.
Thermal exposure time (h) | Weibull characteristic strength, σ0 (MPa) | Weibull modulus, m | R2 | Thickness of W/SiC reaction layer (nm) | |
---|---|---|---|---|---|
As-produced | - | 3801 | 25.8 | 0.93 | 306 |
900 °C | 100 | 3839 | 15.4 | 0.85 | 340 |
200 | 3748 | 21.8 | 0.83 | 348 | |
500 | 3743 | 35.7 | 0.96 | 370 | |
1000 | 3709 | 23.9 | 0.96 | 397 | |
1000 °C | 10 | 3655 | 26.4 | 0.96 | 403 |
20 | 3537 | 28.2 | 0.96 | 458 | |
50 | 3136 | 30.3 | 0.90 | 552 | |
120 | 2460 | 18.8 | 0.93 | 970 | |
1100 °C | 0.5 | 3336 | 29.4 | 0.95 | 490 |
1 | 3175 | 28.5 | 0.93 | 607 | |
1.5 | 2842 | 21.7 | 0.97 | 713 | |
2 | 2655 | 24.6 | 0.93 | 795 | |
2.5 | 2475 | 24.9 | 0.95 | 903 | |
4 | 2084 | 28.6 | 0.96 | 1120 | |
5 | 1885 | 24.4 | 0.96 | 1177 |
Table 2 Weibull statistical analysis of the strength and thickness of W/SiC reaction layer for SiC fibers after different thermal exposure.
Thermal exposure time (h) | Weibull characteristic strength, σ0 (MPa) | Weibull modulus, m | R2 | Thickness of W/SiC reaction layer (nm) | |
---|---|---|---|---|---|
As-produced | - | 3801 | 25.8 | 0.93 | 306 |
900 °C | 100 | 3839 | 15.4 | 0.85 | 340 |
200 | 3748 | 21.8 | 0.83 | 348 | |
500 | 3743 | 35.7 | 0.96 | 370 | |
1000 | 3709 | 23.9 | 0.96 | 397 | |
1000 °C | 10 | 3655 | 26.4 | 0.96 | 403 |
20 | 3537 | 28.2 | 0.96 | 458 | |
50 | 3136 | 30.3 | 0.90 | 552 | |
120 | 2460 | 18.8 | 0.93 | 970 | |
1100 °C | 0.5 | 3336 | 29.4 | 0.95 | 490 |
1 | 3175 | 28.5 | 0.93 | 607 | |
1.5 | 2842 | 21.7 | 0.97 | 713 | |
2 | 2655 | 24.6 | 0.93 | 795 | |
2.5 | 2475 | 24.9 | 0.95 | 903 | |
4 | 2084 | 28.6 | 0.96 | 1120 | |
5 | 1885 | 24.4 | 0.96 | 1177 |
Fig. 4. Backscattered electron images of carbon coatings of SiC fibers after different thermal exposures. The carbon coating thickness is around 1.7 μm for all cases: (a) 900 °C/1000 h, (b) 1000 °C/120 h, (c) 1100 °C/2.5 h, (d) 1100 °C/5 h.
Fig. 5. Raman spectra obtained from carbon coatings of SiC fiber after different thermal exposures: (a) as-produced, (b) 900 °C/1000 h, (c) 1000 °C/120 h, (d) 1100 °C/5 h.
Fig. 7. SEM images of the fracture surfaces of the tungsten core showing two cases with different types of crack initiation and propagation correlated with the thickness of the W/SiC reaction layer: (a) and (b) thin, (c) and (d) thick.
Fig. 8. Morphology of tungsten core/SiC interfacial reaction layer with various degrees of growth after thermal exposure: (a) as-produced, (b) 900 °C/500 h, (c) 900 °C/1000 h, (d) 1000 °C/50 h, (e) 1000 °C/120 h, (f) 1100 °C/0.5 h, (g) 1100 °C/2 h, (h) 1100 °C/5 h.
Fig. 9. Plot of strength vs thickness of W/SiC reaction layer, the inset showing a summary of the work of Gambone et al. using Trimarc 1? SiC fiber [10,21].
Temperature, T (°C) | Growth rate constant, k (nm h-1/2) | Activation energy, Q (kJ/mol) |
---|---|---|
900 | 2.8 | 336 |
1000 | 59 | |
1100 | 414 |
Table 3 Growth parameters of W/SiC interfacial reaction layer.
Temperature, T (°C) | Growth rate constant, k (nm h-1/2) | Activation energy, Q (kJ/mol) |
---|---|---|
900 | 2.8 | 336 |
1000 | 59 | |
1100 | 414 |
|
[1] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[2] | Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 133-145. |
[3] | Lei Lei, Yu Su, Leandro Bolzoni, Fei Yang. Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 7-14. |
[4] | Chao Cai, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Chua Dong Qiu, Chen-Nan Sun, Jie Liu, Qingsong Wei, Yusheng Shi. Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance [J]. J. Mater. Sci. Technol., 2020, 57(0): 51-64. |
[5] | Sheng Cao, Qiaodan Hu, Aijun Huang, Zhuoer Chen, Ming Sun, Jiahua Zhang, Chenxi Fu, Qingbo Jia, Chao Voon Samuel Lim, Rodney R.Boyer, Yi Yang, Xinhua Wu. Static coarsening behaviour of lamellar microstructure in selective laser melted Ti-6Al-4V [J]. J. Mater. Sci. Technol., 2019, 35(8): 1578-1586. |
[6] | Decheng Kong, Chaofang Dong, Xiaoqing Ni, Liang Zhang, Jizheng Yao, Cheng Man, Xuequn Cheng, Kui Xiao, Xiaogang Li. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35(7): 1499-1507. |
[7] | Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, R. Yang. Analysis of local crystallographic orientation in an annealed Ti60 billet [J]. J. Mater. Sci. Technol., 2019, 35(4): 591-595. |
[8] | Jiajia Sun, Hejun Li, Liyuan Han, Qiang Song. Enhancing both strength and toughness of carbon/carbon composites by heat-treated interface modification [J]. J. Mater. Sci. Technol., 2019, 35(3): 383-393. |
[9] | Jinliang Zhang, Bo Song, Qingsong Wei, Dave Bourell, . A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35(2): 270-284. |
[10] | , Yongsheng Liu, Mingxi Zhao, Fang Ye, Laifei Cheng. Effect of heat treatment temperature on microstructure and electromagnetic shielding properties of graphene/SiBCN composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2897-2905. |
[11] | Liu Guoliang, Yang Shanwu, Ding Jianwen, Han Wentuo, Zhou Lujun, Zhang Mengqi, Zhou Shanshan, Misra R.D.K., Wan Farong, Shang Chengjia. Formation and evolution of layered structure in dissimilar welded joints between ferritic-martensitic steel and 316L stainless steel with fillers [J]. J. Mater. Sci. Technol., 2019, 35(11): 2665-2681. |
[12] | Yonggang Fan, Junxiang Fan, Cong Wang. Brazing temperature-dependent interfacial reaction layer features between CBN and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2019, 35(10): 2163-2168. |
[13] | S.Z. Zhang, Z.W. Song, J.C. Han, C.J. Zhang, P. Lin, D.D. Zhu, F.T. Kong, Y.Y. Chen. Effect of 2-6 at.% Mo addition on microstructural evolution of Ti-44Al alloy [J]. J. Mater. Sci. Technol., 2018, 34(7): 1196-1204. |
[14] | W.H. Wang, D. Wu, R.S. Chen, X.N. Zhang. Effect of solute atom concentration and precipitates on serrated flow in Mg-3Nd-Zn alloy [J]. J. Mater. Sci. Technol., 2018, 34(7): 1236-1242. |
[15] | Yi Shao, Chenxi Liu, Zesheng Yan, Huijun Li, Yongchang Liu. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review [J]. J. Mater. Sci. Technol., 2018, 34(5): 737-744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||