Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 427-432    DOI:
Research Articles Current Issue | Archive | Adv Search |
Growth and Photoluminescence Properties of Tetrapod-Shaped ZnO Microcrystals-Whiskers and Microrods
Xiaojun Liang1) , Bingfa Liu2) , Nan Chen 2)†
1) Laboratory for Basic Physics, Nanchang University, Jiangxi 330031, China
2) School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, China
Download:  HTML  PDF(782KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930°C in air without using any catalyst. The tetrapod-shaped ZnO microrods were capped by hexagonal pyramids. It is for the first time observed that the tetrapod-shaped ZnO whiskers and microrods have quite different morphologies, and this is believed to be a result of different growth behaviors associated with these two forms of ZnO microcrystals. The octa-twin model has been used to discuss their growth behaviors. Photoluminescence properties of these two forms of tetrapod-shaped ZnO microcrystals have been investigated using different excitation wavelengths. Both of the two forms of ZnO microcrystals showed strong green emission and weak ultraviolet emission behaviors. The excitation spectrum of the tetrapod-shaped ZnO whiskers showed a strong excitation peak at 395 nm, which was not observed for the tetrapod-shaped ZnO microrods.

Key words:  ZnO      Tetrapod-shaped whiskers      Tetrapod-shaped mirorods      Growth behaviors     
Received:  04 January 2008     
Fund: 

 the Doctorate Research Plan of Nanchang University (Grant No. 0061)

Cite this article: 

Xiaojun Liang,Bingfa Liu,Nan Chen. Growth and Photoluminescence Properties of Tetrapod-Shaped ZnO Microcrystals-Whiskers and Microrods. J Mater Sci Technol, 2009, 25(03): 427-432.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/427

[1 ] Z.L. Wang, K.Y. Xiang, Y. Ding, P. Gao, W.L. Hughes, R. Yang and Y. Zhang: Adv. Funct. Mater., 2004, 14, 943.
[2 ] J.Q. Hu and Y. Bando: Appl. Phys. Lett., 2003, 82, 1401.
[3 ] J. Cheng, R. Guo and Q. M.Wang: Appl. Phys. Lett., 004, 85, 5140.
[4 ] X.H. Sun, S. Lam, T.K. Sham, F. Heigl, A. u1rgensen, N.B. Wong: J. Phys. Chem. B, 2005, 09, 3120.
[5 ] L. Vayssieres, K. Keis, E.E. Lindquist, A. Hagfeldt: J. hys. Chem. B, 2001, 105, 3350.
[6 ] S.J. Henley, M.N.R. Ashfold, D.P. Nicholls, P. Wheatley and D. Cherns: Appl. Phys. A, 2004, 79, 1169.
[7 ] C. Jiang, W. Zhang, G. Zou, W. Yu and Y. Qian: J. hys. Chem. B, 2005, 109, 1361.
[8 ] C.L. Kuo, T.J. Kuo and M.H. Huang: J. Phys. Chem. , 2005, 109, 20115.
[9 ] Y.H. Yang, B. Wang and G.W. Yang: Nanotechnology, 2006, 17, 5557.
[10] Y.J. Kim, C.H. Lee, Y.J. Hong, G.C. Yi, S.S. Kim and H. Cheong: Appl. Phys. Lett., 2006, 89, 163128.
[11] Y. Dai, Y. Zhang and Z.L. Wang: Solid State Commun., 2003, 126, 629.
[12] F.Wang, Z. Ye, D. Ma, L. Zhu and F. Zhuge: J. Cryst. Growth, 2004, 274, 447.
[13] H. Iwanaga, M. Fujii and S. Takeuchi: J. Cryst. Growth, 1993, 134, 275.
[14] ÄU. ÄOzgÄur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Do·gan, V. Avrutin, S.J. Cho and H. Morko»c: J. Appl. Phys., 2005, 98, 041301.
[15] X. Zhou, Z.X. Xie, Z.Y. Jiang, Q. Kuang, S.H. Zhang, T. Xu, R.B. Huang and L.S. Zheng: Chem. Commun., 2005, 5572.
[16] F.Q. He and Y.P. Zhao: Appl. Phys. Lett., 2006, 88, 193113.
[17] Z.L. Wang: J. Phys.: Condens. Matter, 2004, 16, R829.
[18] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P.D. Yang: Adv. Mater., 2001, 13, 113.

[1] Na Wei, Yuan Lin, Zhenkui Li, Wenxia Sun, Guosong Zhang, Mingliang Wang, Hongzhi Cui. One-dimensional Ag2S/ZnS/ZnO nanorod array films for photocathodic protection for 304 stainless steel[J]. 材料科学与技术, 2020, 42(0): 156-162.
[2] Igor Iatsunskyi, Margarita Baitimirova, Emerson Coy, Luis Yate, Roman Viter, Arunas Ramanavicius, Stefan Jurga, Mikhael Bechelany, Donats Erts. Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties[J]. 材料科学与技术, 2018, 34(9): 1487-1493.
[3] Mina Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, Basavaraj Hungund. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties[J]. 材料科学与技术, 2018, 34(6): 1035-1043.
[4] Dunhua Hong, Guangzhong Cao, Junle Qu, Yuanming Deng, Jiaonin Tang. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites[J]. 材料科学与技术, 2018, 34(12): 2359-2367.
[5] Xiaoqi Meng, Changjiang Zhao, Boxu Xu, Pei Wang, Juncheng Liu. Effects of the annealing temperature on the structure and up-conversion photoluminescence of ZnO film[J]. 材料科学与技术, 2018, 34(12): 2392-2397.
[6] Mahsa Pirhashemi, Aziz Habibi-Yangjeh. Fabrication of novel ZnO/MnWO4 nanocomposites with p-n heterojunction: Visible-light-induced photocatalysts with substantially improved activity and durability[J]. 材料科学与技术, 2018, 34(10): 1891-1901.
[7] Kim Hyegyeong, Kim JiWoong, Lee Dooyong, Lee Won-Jae, Bae Jong-Seong, Lee Jaekwang, Park Sungkyun. Spectroscopic Understanding of Structural and Electrical Property Variations in Dopant-Free ZnO Films[J]. 材料科学与技术, 2017, 33(6): 523-526.
[8] Kwang Kim Young,Seo Hye-Jin,Kim Soonhyun,Hwang Sung-Ho,Park Hyunwoong,Kyoo Lim Sang. Effect of ZnO Electrodeposited on Carbon Film and Decorated with Metal Nanoparticles for Solar Hydrogen Production[J]. 材料科学与技术, 2016, 32(10): 1058-1065.
[9] S. Snega, K. Ravichandran, M. Baneto, S. Vijayakumar. Simultaneous Enhancement of Transparent and Antibacterial Properties of ZnO Films by Suitable F Doping[J]. J. Mater. Sci. Technol., 2015, 31(7): 759-765.
[10] Mei Li, Gu Li, Juan Jiang, Zishou Zhang, Xin Dai, Kancheng Mai. Ultraviolet Resistance and Antimicrobial Properties of ZnO in the Polypropylene Materials: A Review[J]. J. Mater. Sci. Technol., 2015, 31(4): 331-339.
[11] Javed Iqbal, Nauman Safdar, Tariq Jan, Muhammad Ismail, S.S. Hussain, Arshad Mahmood, Shaheen Shahzad, Qaisar Mansoor. Facile Synthesis as well as Structural, Raman, Dielectric and Antibacterial Characteristics of Cu Doped ZnO Nanoparticles[J]. J. Mater. Sci. Technol., 2015, 31(3): 300-304.
[12] Yaqin Wang, Wu Tang, Lan Zhang. Crystalline Size Effects on Texture Coefficient, Electrical and Optical Properties of Sputter-deposited Ga-doped ZnO Thin Films[J]. J. Mater. Sci. Technol., 2015, 31(2): 175-181.
[13] Bhagaban Behera, Sudhir Chandra. Synthesis and Characterization of ZnO Nanowires and ZnO-CuO Nanoflakes from Sputter-Deposited Brass (Cu0.65-Zn0.35) Film and Their Application in Gas Sensing[J]. J. Mater. Sci. Technol., 2015, 31(11): 1069-1078.
[14] Cholho Jang, Qingjun Jiang, Jianguo Lu, Zhizhen Ye. Structural, Optical and Electrical Properties of Ga Doped ZnO/Cu grid/Ga Doped ZnO Transparent Electrodes[J]. J. Mater. Sci. Technol., 2015, 31(11): 1108-1110.
[15] K.Karthika, K.Ravichandran. Tuning the Microstructural and Magnetic Properties of ZnO Nanopowders through the Simultaneous Doping of Mn and Ni for Biomedical Applications[J]. J. Mater. Sci. Technol., 2015, 31(11): 1111-1117.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.