Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 373-378    DOI:
Research Articles Current Issue | Archive | Adv Search |
Hot Deformation Characteristics for a Nickel-base Superalloy GH742y
Fuwei Kang1,2), Jianfei Sun 1)†, Guoqing Zhang3), Zhou Li3)
1) School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2) School of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
3) Beijing Institute of Aeronautical Materials, Beijing 100095, China
Download:  HTML  PDF(626KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot deformation characteristics of as-cast nickel-base superalloy GH742y after hot isostatic pressing (HIP)(hereafter referred to as-cast alloy) have been investigated by hot compression tests in the temperature range of 1050 to 1140°C, strain rate range of 0.01 s-1 to 10 s-1 and strain range of 35% to 50% by means of Gleeble-3500 thermal mechanical simulator. The results show that the as-cast alloy exhibits the poor deformability,and shows wedge-shaped cracking beyond the strain of 35%. At strain rates less than 1.0 s-1, the stress-strain curves exhibit nearly steady-state behavior, while at strain rate of 10 s-1, a yield drop and serrated yielding occur. The activation energy values developed on the basis of the experimental data are divided into three domains. The first domain appears at lower strain rate (≤1.0 s-1) and lower  temperature (≤1080°C), with the lowest mean value of activation energy about 261.4 kJ/mol. The second domain appears at the same strain rate as the first domain, but higher temperature (>1080°C), with the intermediate mean value of activation energy about 328.8 kJ/mol. The third domain appears at higher strain rate (10 s-1) and temperature range of 1050 to 1140°C, with the largest mean value of activation energy about 605.05 kJ/mol. Three different constitutive equations are established in corresponding to domains. Microstructural observations in the third domain reveal non-uniform dynamic recrystallization (DRX) of homogeneous γ phase, which leads to the poor deformability and the highest Q value. In contrast, microstructures in the first domain show fully DRX of homogeneous γ phase, leading to the better deformability and the lowest Q value. It is noted that the grain size increases with the increment of strain rate or temperature. These results suggest that bulk metal working of this material may be carried out in the first domain where fully DRX of  γ homogeneous occurred.

Key words:  Superalloy      Hot deformation      Constitutive equation      Activation energy     
Received:  10 April 2008     

Cite this article: 

Fuwei Kang. Jianfei Sun,Guoqing Zhang,Zhou Li. Hot Deformation Characteristics for a Nickel-base Superalloy GH742y. J Mater Sci Technol, 2009, 25(03): 373-378.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/373

[1 ] Z.Li, H. Yuan and G.Q. Zhang: Journal of Iron and Steel Research, 2003, 15(7), 679.
[2 ] Y.V.R.K. Prasad, S. Sasidhara and V.K. Sikka: Inter-metallics, 2000, 8, 987.
[3 ] A. Thomas, M. EI-Wshabi, J.M. Cabrera and J.M. Prado: J. Mater. Proc. Technol., 2006, 177, 469.
[4 ] B.J. Zhang, G.P. Zhao, L.Y. Jiao and G.H. Xu: Acta. Metall. Sin., 2005, 41(4), 351. (in Chinese)
[5 ] W.H. Zhang and S.H. Zhang: Acta Metall. Sin., 2006, 42(10), 1036. (in Chinese)
[6 ] H. Monajati, M. Jahazi, S. Yue and A.K. Taheri: Metall. Mater. Trans. A., 2005, 36, 895.
[7 ] A.R. Mashreghi, H. Monajatizadeh, M. Jahazi and S. Yue: Mater. Sci. Technol., 2004, 20, 161.
[8 ] Baohui Tian, Christoph Lind, Erhard Schafler and Osker Paris: Mater. Sci. Eng., 2004, A367, 198.
[9 ] S.L. Semiatin, D.S. Weaver, P.N. Fagin and M.G. Glavicic: Metall. Mater. Trans. A, 2004, 35, 679.
[10] L.X. Zhou and T.N. Baker: Mater. Sci. Eng., 1994, A177, 1.
[11] A.A. Guimaraes and J.J. Jonas: Metall. Trans. A, 1981, 12, 1655.
[12] S.C. Medeiros, W.G. Frazier and Y.V.R.K. Prasad: Metall. Mater. Trans. A., 2000, 31, 2317.
[13] F. Garofalo: Fundamentals of Creep and Creep Rupture in Metals, New York, Macmillan, 1965.
[14] C.M. Sellars and W.J. Tegart: Acta Metall., 1996, A27, 3346.
[15] H.J. McQueen and N.D. Ryan: Mater. Sci. Eng. A., 2002, 322, 43.
[16] H.J. McQueen, S. Yue, N.D. Ryan and E. Fry: L.A. Dobrzanski, Advanced Materials and Technologies, Silesian Tech. Univ, Gliwice, Poland, 1995, 295.
[17] H.J. McQueen, S. Yue, N.D. Ryan and E. Fry: J. Mater. Proc. Technol., 1995, 53, 293.
[18] H.J. McQueen and N.D. Ryan: Mater. Sci. Eng., 2002, A322, 43.

[1] Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. 材料科学与技术, 2020, 45(0): 23-34.
[2] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[3] Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃[J]. 材料科学与技术, 2020, 45(0): 125-132.
[4] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[5] Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 45(0): 207-214.
[6] Qiang Zhu, Chuanjie Wang, Kai Yang, Gang Chen, Heyong Qin, Peng Zhang. Plastic deformation behavior of a nickel-based superalloy on the mesoscopic scale[J]. 材料科学与技术, 2020, 40(0): 146-157.
[7] Jun Gao, Jibo Tan, Ming Jiao, Xinqiang Wu, Lichen Tang, Yifeng Huang. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water[J]. 材料科学与技术, 2020, 42(0): 163-174.
[8] Jian Yang Zhang, Bin Xu, Naeem ul Haq Tariq, Ming Yue Sun, Dian Zhong Li, Yi Yi Li. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys[J]. 材料科学与技术, 2020, 40(0): 54-63.
[9] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[10] Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 44(0): 76-95.
[11] Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. 材料科学与技术, 2020, 38(0): 28-38.
[12] Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method[J]. 材料科学与技术, 2020, 38(0): 125-134.
[13] Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 7-17.
[14] Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain[J]. 材料科学与技术, 2020, 36(0): 160-166.
[15] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.