Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 361-364    DOI:
Research Articles Current Issue | Archive | Adv Search |
Formation of Re-containing Carbides in a Second Generation Directionally Solidi¯ed Ni Base Superalloy
T. Zhao1,2),  D. Wang2), J. Zhang2)†, G. Chen1) and L.H. Lou2)
1. Institute of Metal Research Chinese Academy of Sciences
2. Nanjing University of Science and Technology
Download:  HTML  PDF(907KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The precipitates at grain boundary in a directionally solidified Ni base superalloy after heat treatment, aging at 975°C, and creep rupture test have been characterized. Besides the primary MC carbides and fine particles of  μ phase, the Re-containing M23C6 was observed. The precipitation kinetics revealed that the formation of M23C6 was associated with the dissolution of μ phase and MC carbides. TEM image shows that the continuous precipitation of M23C6 particles effectively hinders the dislocation  movement and strengthens the grain boundaries. The high strength of the alloy suggests that M23C6 carbides are beneficial to the properties although Re as an important matrix strengthening element was consumed.

Key words:  Ni-base Superalloys      Directional solidification      Rhenium      Carbide     
Received:  27 August 2008     
Corresponding Authors:  Jian Zhang     E-mail:  jianzhang@imr.ac.cn

Cite this article: 

Tan Zhao,Dong Wang,Jian Zhang,Guang Chen,Langhong Lou. Formation of Re-containing Carbides in a Second Generation Directionally Solidi¯ed Ni Base Superalloy. J Mater Sci Technol, 2009, 25(03): 361-364.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/361

[1 ] A.F. Giamei and D.L. Anton: Metall. Trans., 1985, 16A, 1997.
[2 ] J. R¶using, N. Wanderka, U. Czubayko, V. Naundorf, D. Mukherji and J. RÄosler: Scripta Mater, 2002, 46, 235.
[3 ] D. Blavette, P. Caron and T. Khan: Superalloys 1988, eds. S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund (eds.), TMS, Warrendale, PA, 1988, 305.
[4 ] C.M.F. Rae and R.C. Reed: Acta Mater, 2001, 49, 4113.
[5 ] M. Pessah, P. Caron and T. Khan: Superalloys 1992, eds. S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom, TMS, Warrendale, PA, 1992, 567.
[6 ] A.D. Cetel and D.N. Duhl: Superalloys 1992, eds. S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom, TMS, Warrendale, PA, 1992, 287.
[7 ] T. Kobayashi, M. Sato, Y. Koizumi, H. Harada, T. Yamagata, A. Tamura and J. Fujioka: Superalloy 2000, eds. T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. Mclean, S. Olson, J.J. Schirra (eds.), TMS, Warrendale, PA, 2000, 323.
[8 ] Q.Z. Chen and D.M. Knowles: Metall. Mater. Trans., 2002, 33A, 1319.
[9 ] J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan and Z.Q. Hu: Scripta Mater., 2006, 55, 331.
[10] T. Zhao: Ph.D. Thesis, Nanjing University of Science and Technology, 2009. (in Chinese)
[11] J.X. Yang: Ph.D. thesis, Institute of Metal Research, Chinese Academy of Sciences, 2006. (in Chinese)
[12] P.E. Li, J.S. Zhang, F.G. Wang and J.Z. Jin: Metall. Trans., 1992, 23A, 1379.
[13] J.S. Zhang, W.X. Chen and Z.B. Cao: Acta Metall. Sinica (English Letters), 1989, 2, 368.

[1] Heng Chen, Biao Zhao, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides[J]. 材料科学与技术, 2020, 47(0): 216-222.
[2] Yuanhao Dong, Sansan Shuai, Tianxiang Zheng, Jiawei Cao, Chaoyue Chen, Jiang Wang, Zhongming Ren. In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging[J]. 材料科学与技术, 2020, 39(0): 113-123.
[3] Huijun Liu, Ying Wang, Lingxu Yang, Ruijia Liu, Chaoliu Zeng. Synthesis and characterization of nanosized Ti3AlC2 ceramic powder by elemental powders of Ti, Al and C in molten salt[J]. 材料科学与技术, 2020, 37(0): 77-84.
[4] Lingxu Yang, Ying Wang, Ruijia Liu, Huijun Liu, Xue Zhang, Chaoliu Zeng, Chao Fu. In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti(II) species[J]. 材料科学与技术, 2020, 37(0): 173-180.
[5] Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification[J]. 材料科学与技术, 2020, 38(0): 19-27.
[6] Liu Weifeng, Cao Yanfei, Guo Yifeng, Sun Mingyue, Xu Bin, Li Dianzhong. Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state[J]. 材料科学与技术, 2020, 38(0): 170-182.
[7] Zhang Hui, Hu Tao, Wang Xiaohui, Zhou Yanchun. Structural defects in MAX phases and their derivative MXenes: A look forward[J]. 材料科学与技术, 2020, 38(0): 205-220.
[8] Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates[J]. 材料科学与技术, 2020, 42(0): 63-74.
[9] Yuhong Zhao, Bing Zhang, Hua Hou, Weipeng Chen, Meng Wang. Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process[J]. 材料科学与技术, 2019, 35(6): 1044-1052.
[10] Zhe Shen, Minghu Peng, Dongsheng Zhu, Tianxiang Zheng, Yunbo Zhong, Weili Ren, Chuanjun Li, Weidong Xuan, Zhongming Ren. Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification[J]. 材料科学与技术, 2019, 35(4): 568-577.
[11] Yuchen Deng, Yaming Zhang, Nanlong Zhang, Qiang Zhi, , Jianfeng Yang. Preparation and characterization of pure SiC ceramics by high temperature physical vapor transport induced by seeding with nano SiC particles[J]. 材料科学与技术, 2019, 35(12): 2756-2760.
[12] Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method for ultrahigh temperature applications[J]. 材料科学与技术, 2019, 35(12): 2778-2784.
[13] Junfeng Gu, Ji Zou, Peiyan Ma, Hao Wang, Jinyong Zhang, Weimin Wang, Zhengyi Fu. Reactive sintering of B4C-TaB2 ceramics via carbide boronizing: Reaction process, microstructure and mechanical properties[J]. 材料科学与技术, 2019, 35(12): 2840-2850.
[14] Haibin Wang, Mark Gee, Qingfan Qiu, Hannah Zhang, Xuemei Liu, Hongbo Nie, Xiaoyan Song, Zuoren Nie. Grain size effect on wear resistance of WC-Co cemented carbides under different tribological conditions[J]. 材料科学与技术, 2019, 35(11): 2435-2446.
[15] Mohamed M. El-Sayed Seleman, Mohamed M.Z. Ahmed, Sabbah Ataya. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites[J]. 材料科学与技术, 2018, 34(9): 1580-1591.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.