J. Mater. Sci. Technol. ›› 2023, Vol. 132: 18-26.DOI: 10.1016/j.jmst.2022.06.005
• Research Article • Previous Articles Next Articles
Yuancheng Lina, Haixin Zhanga, Yi Zoua, Kunyan Lua, Luohuizi Lia, Yan Wua, Jingjing Chenga, Yanxia Zhangb,c,*(), Hong Chena, Qian Yua,c,*(
)
Received:
2022-03-12
Revised:
2022-05-04
Accepted:
2022-06-05
Published:
2023-01-01
Online:
2022-06-22
Contact:
Yanxia Zhang,Qian Yu
About author:
yuqian@suda.edu.cn (Q.Yu).Yuancheng Lin, Haixin Zhang, Yi Zou, Kunyan Lu, Luohuizi Li, Yan Wu, Jingjing Cheng, Yanxia Zhang, Hong Chen, Qian Yu. Superhydrophobic photothermal coatings based on candle soot for prevention of biofilm formation[J]. J. Mater. Sci. Technol., 2023, 132: 18-26.
Fig. 1. (a) Representative SEM images and (b) contact angle images of different sample surfaces. (c) EDS mapping of G-CSF surface. (d) Changes in surface temperature of different samples in PBS under NIR irradiation (2 W/cm2), the corresponding infrared thermal images were shown right.
Fig. 2. (a,b) Representative SEM images of attached (a) P. aeruginosa and (b) S. aureus on different surfaces with/without NIR irradiation (1.5 W/cm2, 5 min). The live P. aeruginosa and S. aureus were pseudo-colored green and yellow, respectively. The dead bacteria were pseudo-colored red. The numbers of formed bacterial colonies are summarized in (c) and (d). Data are mean ± SD (n = 3). # indicates negligible colony formation (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 3. (a) Representative fluorescence images of E. coli (DH5α-pBADDs) attached on the surfaces of a glass slide that was half-coated with CSF. (b) Representative SEM images of P. aeruginosa and S. aureus on the glass and G-CSF surface. The P. aeruginosa and S. aureus were pseudo-colored green and yellow, respectively. (c) Representative photographs of P. aeruginosa and S. aureus colonies formed on agar plates for different surfaces. The corresponding numbers of formed bacterial colonies are summarized in (d). Data are mean ± SD (n = 3) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 4. Representative SEM images of P. aeruginosa biofilms formed on sample surfaces after 1, 2, and 3 days. The bacteria were pseudo-colored green. The NIR irradiation condition is 1.5 W/cm2 for 5 min (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 5. Representative SEM images of S. aureus biofilms formed on sample surfaces after 1, 3, and 5 days. The bacteria were pseudo-colored yellow. The NIR irradiation condition is 1.5 W/cm2 for 5 min (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 6. Numbers of (a) P. aeruginosa and (b) S. aureus colonies of biofilms formed on different surfaces after different periods. The NIR irradiation condition is 1.5 W/cm2 for 5 min. Data are mean ± SD (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001).
Fig. 7. Representative images of well plates showing CV-stained biofilms of (a) P. aeruginosa and (b) S. aureus. on different surfaces after different periods. The corresponding OD values were shown right. The NIR irradiation condition is 1.5 W/cm2 for 5 min. Data are mean ± SD (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001).
Scheme 2. Schematic illustration of biofilm formation on different types of surfaces. (I) photothermal surface; (II) superhydrophobic surface; (III) superhydrophobic photothermal surface.
Fig. 8. (a) Representative photographs of different substrates before and after modification. (b-d) Representative SEM images (b), contact angle images (c), and changes in surface temperature (d) of CSF coated sample surfaces. (e) Representative photographs of P. aeruginosa colonies formed on agar plates for different samples with NIR irradiation (1.5 W/cm2 for 5 min).
[1] |
H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Nat. Rev. Microbiol. 14 (2016) 563-575.
DOI URL |
[2] |
H. Koo, R.N. Allan, R.P. Howlin, P. Stoodley, L. Hall-Stoodley, Nat. Rev. Microbiol. 15 (2017) 740-755.
DOI URL |
[3] |
T. Wei, Z. Tang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces 9 (2017) 37511-37523.
DOI URL |
[4] |
A. Madni, R. Kousar, N. Naeem, F. Wahid, J. Bioresour. Bioprod. 6 (2021) 11-25.
DOI URL |
[5] |
H.C. Flemming, J. Wingender, Nat. Rev. Microbiol. 8 (2010) 623-633.
DOI URL |
[6] |
M. Abdallah, C. Benoliel, D. Drider, P. Dhulster, N.E. Chihib, Arch. Microbiol. 196 (2014) 453-472.
DOI URL PMID |
[7] | L. Shkodenko, I. Kassirov, E. Koshel, Microorganisms 8 (2020) 1545. |
[8] |
D. He, Y. Yu, F. Liu, Y. Yao, P. Li, J. Chen, N. Ning, S. Zhang, Chem. Eng. J. 382 (2020) 122976.
DOI URL |
[9] | Y. Wang, F. Wang, H. Zhang, B. Yu, H. Cong, Y. Shen, Appl. Mater. Today 25 (2021) 101192. |
[10] |
T. Wei, Q. Yu, H. Chen, Adv. Healthc. Mater. 8 (2019) 1801381.
DOI URL |
[11] | X. Li, B. Wu, H. Chen, K. Nan, Y. Jin, L. Sun, B. Wang, J. Mater. Chem. B 6 (2018) 4274-4292. |
[12] | K. Yang, J. Shi, L. Wang, Y. Chen, C. Liang, L. Yang, L. Wang, J. Mater. Sci. Tech- nol. 99 (2022) 82-100. |
[13] |
S. Kumar, D.N. Roy, V. Dey, Colloid Interface Sci. Commun. 43 (2021) 100464.
DOI URL |
[14] | Q. Yu, H. Chen, Acta Polym. Sin. 51 (2020) 319-325. |
[15] | A .M.C. Maan, A.H. Hofman, W.M. Vos, M Kamperman, Adv. Funct. Mater. 30 (2020) 20 0 0936. |
[16] |
M. He, K. Gao, L. Zhou, Z. Jiao, M. Wu, J. Cao, X. You, Z. Cai, Y. Su, Z. Jiang, Acta Biomater. 40 (2016) 142-152.
DOI URL |
[17] | Z. Li, Z. Guo, Nanoscale 11 (2019) 22636-22663. |
[18] |
X. Zhang, L. Wang, E. Levanen, RSC Adv. 3 (2013) 12003-12020.
DOI URL |
[19] | A. Hooda, M.S. Goyat, J.K. Pandey, A. Kumar, R. Gupta, Prog. Org. Coat. 142 (2020) 105557. |
[20] |
P. Nguyen-Tri, H.N. Tran, C.O. Plamondon, L. Tuduri, D.V.N. Vo, S. Nanda, A. Mishra, H.P. Chao, A.K. Bajpai, Prog. Org. Coat. 132 (2019) 235-256.
DOI URL |
[21] |
M.C. Xia, T. Yang, S.Y. Chen, G.M. Yuan, Colloid Interface Sci. Commun. 36 (2020) 100264.
DOI URL |
[22] |
W. Zhang, D. Wang, Z. Sun, J. Song, X. Deng, Chem. Soc. Rev. 50 (2021) 4031-4061.
DOI URL |
[23] |
D.W. Wei, H. Wei, A.C. Gauthier, J. Song, Y. Jin, H. Xiao, J. Bioresour. Bioprod. 5 (2020) 1-15.
DOI URL |
[24] | B.J. Privett, J. Youn, S.A. Hong, J. Lee, J. Han, J.H. Shin, M.H. Schoenfisch, Lang- muir 27 (2011) 9597-9601. |
[25] | C.R. Crick, S. Ismail, J. Pratten, I.P. Parkin, Thin Solid Films 519 (2011) 3722-3727. |
[26] |
Z. Wang, Y. Su, Q. Li, Y. Liu, Z. She, F. Chen, L. Li, X. Zhang, P. Zhang, Mater. Charact. 99 (2015) 200-209.
DOI URL |
[27] | G.B. Hwang, K. Page, A. Patir, S.P. Nair, E. Allan, I.P. Parkin, ACS Nano 12 (2018) 6050-6058. |
[28] |
Q. Yu, Z. Wu, H. Chen, Acta Biomater. 16 (2015) 1-13.
DOI URL |
[29] |
T. Wei, Y. Qu, Y. Zou, Y. Zhang, Q. Yu, Curr. Opin. Chem. Eng. 34 (2021) 100727.
DOI URL |
[30] |
B. Song, E. Zhang, X. Han, H. Zhu, Y. Shi, Z. Cao, ACS Appl. Mater. Interfaces 12 (2020) 21330-21341.
DOI URL |
[31] |
N. Rauner, C. Mueller, S. Ring, S. Boehle, A. Strassburg, C. Schoeneweiss, M. Wasner, J.C. Tiller, Adv. Funct. Mater. 28 (2018) 1801248.
DOI URL |
[32] |
T. Ren, M. Yang, K. Wang, Y. Zhang, J. He, ACS Appl. Mater. Interfaces 10 (2018) 25717-25725.
DOI URL |
[33] |
Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, J. Mater. Sci. Technol. 78 (2021) 51-67.
DOI URL |
[34] |
Y. Zou, Y. Zhang, Q. Yu, H. Chen, J. Mater. Sci. Technol. 70 (2021) 24-38.
DOI URL |
[35] |
S.H. Kim, E.B. Kang, C.J. Jeong, S.M. Sharker, I. In, S.Y. Park, ACS Appl. Mater. Interfaces 7 (2015) 15600-15606.
DOI URL |
[36] |
Y. Wang, T. Wei, Y. Qu, Y. Zhou, Y. Zheng, C. Huang, Y. Zhang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces 12 (2020) 21283-21291.
DOI URL |
[37] | Y. Wang, Y. Zou, Y. Wu, T. Wei, K. Lu, L. Li, Y. Lin, Y. Wu, C. Huang, Y. Zhang, H. Chen, Q. Yu, ACS Appl. Mater. Interfaces 13 (2021) 48403-48413. |
[38] |
L. Li, G. Li, Y. Wu, Y. Lin, Y. Qu, Y. Wu, K. Lu, Y. Zou, H. Chen, Q. Yu, Y. Zhang, J. Mater. Sci. Technol. 110 (2022) 14-23.
DOI URL |
[39] |
Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen, L. Sun, X. Li, J. Ji, Q. Yu, L. Shen, B. Wang, Chem. Eng. J. 358 (2019) 74-90.
DOI URL |
[40] |
R. Xiong, R.X. Xu, C. Huang, S. De Smedt, K. Braeckmans, Chem. Soc. Rev. 50 (2021) 5746-5776.
DOI URL |
[41] |
J. Huo, Q. Jia, H. Huang, J. Zhang, P. Li, X. Dong, W. Huang, Chem. Soc. Rev. 50 (2021) 8762-8789.
DOI URL |
[42] |
M. Xu, L. Li, Q. Hu, Biomater. Sci. 9 (2021) 1995-2008.
DOI URL |
[43] |
Y. Zou, Y. Zhang, Q. Yu, H. Chen, Biomater. Sci. 9 (2021) 10-22.
DOI URL |
[44] | Y. Ren, H. Liu, X. Liu, Y. Zheng, Z. Li, C. Li, K.W.K. Yeung, S. Zhu, Y. Liang, Z. Cui, S. Wu, Cell Rep. Phys. Sci. 1 (2020) 100245. |
[45] |
X.Y. Yin, Y. Zhang, D. Wang, Z. Liu, Y. Liu, X. Pei, B. Yu, F. Zhou, Adv. Funct. Mater. 25 (2015) 4237-4245.
DOI URL |
[46] |
G. Jiang, L. Chen, S. Zhang, H. Huang, ACS Appl. Mater. Interfaces 10 (2018) 36505-36511.
DOI URL |
[47] | L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 27 (2015) 4889-4894. |
[48] | B. Ge, S. Tang, H. Zhang, W. Li, M. Wang, G. Ren, Z. Zhang, J. Mater. Chem. A 9 (2021) 7967-7976. |
[49] |
D. Weng, F. Xu, X. Li, Y. Li, J. Sun, J. Mater. Chem. A 6 (2018) 24441-24451.
DOI URL |
[50] | L. Kong, Y. Li, X. Kong, Z. Ji, X. Wang, X. Zhang, Compos. Part B 232 (2022) 109588. |
[51] | X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Science 335 (2012) 67-70. |
[52] | S. Wu, Y. Du, Y. Alsaid, D. Wu, M. Hua, Y. Yan, B. Yao, Y. Ma, X. Zhu, X. He, Proc. Natl. Acad. Sci. U. Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 11240-11246. |
[53] |
B. Zhang, J. Duan, Y. Huang, B. Hou, J. Mater. Sci. Technol. 71 (2021) 1-11.
DOI URL |
[54] |
C. Yang, Z. Li, Y. Huang, K. Wang, Y. Long, Z. Guo, X. Li, H. Wu, Nano Lett. 21 (2021) 3198-3204.
DOI URL |
[55] |
L. Zhang, B. Bai, N. Hu, H. Wang, Sol. Energy Mater. Sol. Cells 221 (2021) 110876.
DOI URL |
[56] | W. Sun, X. Zhang, H.R. Jia, Y.X. Zhu, Y. Guo, G. Gao, Y.H. Li, F.G. Wu, Small 15 (2019) e1804575. |
[57] |
K.P. Rumbaugh, K. Sauer, Nat. Rev. Microbiol. 18 (2020) 571-586.
DOI URL PMID |
[58] | M. Krsmanovic, D. Biswas, H. Ali, A. Kumar, R. Ghosh, A.K. Dickerson, Adv. Col- loid Interface Sci. 288 (2021) 102336. |
[59] |
Y. Zou, K. Lu, Y. Lin, Y. Wu, Y. Wang, L. Li, C. Huang, Y. Zhang, J.L. Brash, H. Chen, Q. Yu, ACS Appl. Mater. Interfaces 13 (2021) 45191-45200.
DOI URL |
[60] | X. Dou, D. Zhang, C. Feng, L. Jiang, ACS Nano 9 (2015) 10664-10672. |
[61] |
Y. Jiang, Y. Yin, X. Zha, X. Dou, C. Feng, Chin. Chem. Lett. 28 (2017) 813-817.
DOI URL |
[1] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[2] | Binbin Zhang, Jizhou Duan, Yanliang Huang, Baorong Hou. Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness [J]. J. Mater. Sci. Technol., 2021, 71(0): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||