J. Mater. Sci. Technol. ›› 2023, Vol. 132: 42-49.DOI: 10.1016/j.jmst.2022.05.046
• Research Article • Previous Articles Next Articles
Min Zhanga,b, Mao-Sheng Caoa,*(
), Qiang-Qiang Wanga, Xi-Xi Wanga,c, Wen-Qiang Caoa, Hui-Jing Yangd,*(
), Jie Yuane,*(
)
Received:2022-04-11
Revised:2022-05-20
Accepted:2022-05-21
Published:2023-01-01
Online:2022-06-25
Contact:
Mao-Sheng Cao,Hui-Jing Yang,Jie Yuan
About author:yuanjie4000@sina.com (J. Yuan).Min Zhang, Mao-Sheng Cao, Qiang-Qiang Wang, Xi-Xi Wang, Wen-Qiang Cao, Hui-Jing Yang, Jie Yuan. A multifunctional stealthy material for wireless sensing and active camouflage driven by configurable polarization[J]. J. Mater. Sci. Technol., 2023, 132: 42-49.
Fig. 1. Schematic structure of (a) bismuth iron oxide, (b) bismuth iron cobalt oxide with Fe:Co of 95:5 stoichiometry, and (c) Fe:Co of 90:10 stoichiometry. (d) TEM image and (e) SAED pattern of the sample without cobalt element. (f) HRTEM of bismuth iron oxide with the observation of (110) and (012) planes. (g) HRTEM image of bismuth iron cobalt oxide. Inset is the TEM image with the scale bar of 100 nm. The SAED patterns of (h) typical rhombohedral phase and (i) superlattice modulation phase.
Fig. 2. Atomic-scale insight into bismuth iron cobalt oxide. (a) HRTEM image. (b-e) Atomic-scale insight into the material showing: (b) VO, (c) VBi, (d) VFe and (e) phase boundary. (f) CPK model and STM image of bismuth iron cobalt oxide and bismuth iron cobalt oxide with VO, VBi and VFe, which is calculated by materials studio.
Fig. 3. (a-c) Frequency-dependence εp" and fitted relaxation peak. (d-h) Cole-Cole plots for peaks 1, 2, 3, 4 and 5, and the insets are dipoles that generate polarization. (i) Fitted areas of relaxation peaks and (j) their proportion. (k-m) Schematic of dipole configuration changes induced by Co ions.
Fig. 4. RL of bismuth iron cobalt oxide with (a) Fe:Co = 100:0, (b) Fe:Co = 95:5 and (c) Fe:Co = 90:10 at the thickness of 1.74-2.82 mm. tan δ of bismuth iron cobalt oxide with (d) Fe:Co = 100:0, (e) Fe:Co = 95:5 and (f) Fe:Co = 90:10.
Fig. 5. An innovative strain sensor with real-time visualization characteristics. (a) Capacitor-like structure. (b-d) S11 vs. d of (b) bismuth iron oxide, (c) bismuth iron cobalt oxide (Fe:Co = 95:5), and (d) bismuth iron cobalt oxide (Fe:Co = 90:10). Insets, the corresponding d-dependent S11 vs. Frequency. (e) ΔS11 vs. d at f = 12 GHz. (f) ΔS11 vs. strain, and the inset is the schematic for the wireless pressure-sensing device. (g) The images for real-time visualization sensing. The left is the schematic illustration for the load applied to the sensor, the middle is the corresponding electric energy density on the monitor, and the right is the simulated diagram.
Fig. 6. Active camouflage systems. (a) Schematic of the active camouflage systems with a robotic arm installed in each pixel to modulate the distance. (b) Reflection energy maps of a system composed of a 4 × 4-pixel array, with 2 × 2 pixels in the center having different d. (c) Reflection energy map of the active camouflage system with customized letters of "BIT".
| [1] | G. Wang, Z.M. Fan, S. Murakami, Z.L. Lu, D.A. Hall, D.C. Sinclair, A. Feteira, X. L. Tan, J.L. Jones, A.K. Kleppe, D.W. Wang, I.M. Reaney, J. Mater. Chem. A 7 (2019) 21254. |
| [2] |
P. Li, J.W. Zhai, B. Shen, S.J. Zhang, X.L. Li, F.Y. Zhu, X.M. Zhang, Adv. Mater. 30 (2018) 1705171.
DOI URL |
| [3] |
L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.F. Li, S.J. Zhang, Prog. Mater. Sci. 102 (2019) 72.
DOI URL |
| [4] |
J.G. Wu, Z. Fan, D.Q. Xiao, J.G. Zhu, J. Wang, Prog. Mater. Sci. 84 (2016) 335.
DOI URL |
| [5] | X.J. Cheng, Z.W. Li, J.G. Wu, J. Mater. Chem. A 3 (2015) 5805. |
| [6] |
C.P. Liu, S.Z. Wu, J.Y. Zhang, J.L. Chen, J.J. Ding, J. Ma, Y.L. Zhang, Y.W. Sun, S. Tu, H. C. Wang, P.F. Liu, C.X. Li, Y. Jiang, P. Gao, D.P. Yu, J. Xiao, R. Duine, M.Z. Wu, C.W. Nan, J.X. Zhang, H.M. Yu, Nat. Nanotechnol. 14 (2019) 691.
DOI URL |
| [7] | S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, ACS Nano 12 (2018) 986. |
| [8] |
A. Palmroth, T. Salpavaara, J. Lekkala, M. Kellomaki, Adv. Mater. Technol. 4 (2019) 1900428.
DOI URL |
| [9] |
Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, Y.Z. Wang, Nano Micro Lett. 14 (2022) 76.
DOI URL |
| [10] |
J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Carbon 183 (2021) 205-215 N Y.
DOI URL |
| [11] |
Y.L. Zhang, Y. Yan, H. Qiu, Z.L. Ma, K.P. Ruan, J.W. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI URL |
| [12] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI URL |
| [13] |
G.H. Lee, J.K. Park, J. Byun, J.C. Yang, S.Y. Kwon, C. Kim, C. Jang, J.Y. Sim, J.G. Yook, S. Park, Adv. Mater. 32 (2020) 1906269.
DOI URL |
| [14] |
J. Kim, M. Kim, M.S. Lee, K. Kim, S. Ji, Y.T. Kim, J. Park, K. Na, K.H. Bae, H.K. Kim, F. Bien, C.Y. Lee, J.U. Park, Nat. Commun. 8 (2017) 14997.
DOI URL |
| [15] | D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, Nanoscale 2 (2010) 1149-1154. |
| [16] |
C.S. Chen, C.S. Tu, P.Y. Chen, W.S. Chang, Y.U. Idzerda, Y. Ting, J.M. Lee, C.W. Yu, J. Am. Ceram. Soc. 101 (2018) 883-896.
DOI URL |
| [17] |
C.J. Cheng, D. Kan, S.H. Lim, W.R. McKenzie, P.R. Munroe, L.G. Salamanca-Riba, R. L. Withers, I. Takeuchi, V. Nagarajan, Phys. Rev. B 80 (2009) 014109.
DOI URL |
| [18] |
B. Noheda, L. Wu, Y. Zhu, Phys. Rev. B 66 (2002) 060103.
DOI URL |
| [19] |
T.T. Yang, J. Wei, Y.X. Guo, Z.B. Lv, Z. Xu, Z.X. Cheng, ACS Appl. Mater. Interfaces 11 (2019) 23372-23381.
DOI URL |
| [20] |
J.J. Ouyang, J. Pei, Q. Kuang, Z.X. Xie, L.S. Zheng, ACS Appl. Mater. Interfaces 6 (2014) 12505-12514.
DOI URL |
| [21] |
D. Lebeugle, D. Colson, A. Forget, M. Viret, A. M. Bataille, A. Gukasov, Phys. Rev. Lett. 100 (2008) 227602.
DOI URL |
| [22] |
X.Y. Chen, R.Y. Tian, J.M. Wu, Y.J. Zhao, H.C. Ding, C.G. Duan, J. Phys. Condens. Matter 23 (2011) 326005.
DOI URL |
| [23] |
Y.F. Fan, Y.H. Zhou, M.L. Shen, X. Xu, Z.C. Wang, W.W. Mao, J. Zhang, J.P. Yang, Y. Pu, X.A. Li, J. Mater. Sci. Mater. Electron. 29 (2018) 18593-18599.
DOI URL |
| [24] |
L.Z. Li, X.X. Cheng, J.R. Jokisaari, P. Gao, J. Britson, C. Adamo, C. Heikes, D. G. Schlom, L.Q. Chen, X.Q. Pan, Phys. Rev. Lett. 120 (2018) 137602.
DOI URL |
| [25] |
I.M. Reaney, I. MacLaren, L.Q. Wang, B. Schaffer, A. Craven, K. Kalantari, I. Sterianou, S. Miao, S. Karimi, D.C. Sinclair, Appl. Phys. Lett. 100 (2012) 182902.
DOI URL |
| [26] | X.M. Li, M.Q. Li, X.Y. Li, S.L. Tian, A.Y. Abid, N. Li, J.L. Wang, L. Zhang, X.J. Li, Y. C. Zhao, C. Wang, Z. Xu, S. Meng, P. Gao, X.D. Bai, Acta Mater. 70 (2019) 132-137. |
| [27] |
W.R. Geng, X.H. Tian, Y.X. Jiang, Y.L. Zhu, Y.L. Tang, Y.J. Wang, M.J. Zou, Y.P. Feng, B. Wu, W.T. Hu, X.L. Ma, Acta Mater. 186 (2020) 68-76.
DOI URL |
| [28] |
T. Xia, C. Zhang, N.A. Oyler, X.B. Chen, Adv. Mater. 25 (2013) 6905-6910.
DOI URL |
| [29] |
X.L. Li, X.W. Yin, C.Q. Song, M.K. Han, H.L. Xu, W.Y. Duan, L.F. Cheng, L.T. Zhang, Adv. Funct. Mater. 28 (2018) 1803938.
DOI URL |
| [30] | M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang, J. Yuan, Nano Micro Lett. 13 (2021) 27. |
| [31] |
R. Moubah, M. Elzo, S.E. Moussaoui, D. Colson, N. Jaouen, R. Belkhou, M. Viret, Appl. Phys. Lett. 100 (2012) 042406.
DOI URL |
| [32] |
J. Wang, S.Z. Wu, J. Ma, L.S. Xie, C.S. Wang, I.A. Malik, Y.L. Zhang, K. Xia, C. W. Nan, J.X. Zhang, Appl. Phys. Lett. 112 (2018) 072408.
DOI URL |
| [33] |
M.S. Cao, R.R. Qin, C.J. Qiu, J. Zhu, Mater. Des. 24 (2003) 391.
DOI URL |
| [1] | Runrun Cheng, Yan Wang, Xiaochuang Di, Zhao Lu, Ping Wang, Xinming Wu. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions [J]. J. Mater. Sci. Technol., 2022, 129(0): 15-26. |
| [2] | Xin Li, Xiaoke Lu, Minghang Li, Jimei Xue, Fang Ye, Xiaomeng Fan, Yongsheng Liu, Laifei Cheng, Litong Zhang. A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature [J]. J. Mater. Sci. Technol., 2022, 125(0): 29-37. |
| [3] | Panpan Zhou, Meng Wang, Zhi Song, Yongkang Guan, Lixi Wang, Qitu Zhang. Coral-like carbon-based composite derived from layered structure Co-MOF-71 with outstanding impedance matching and tunable microwave absorption performance [J]. J. Mater. Sci. Technol., 2022, 108(0): 10-17. |
| [4] | Zhenguo Gao, Zehao Zhao, Di Lan, Kaichang Kou, Jiaoqiang Zhang, Hongjing Wu. Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents [J]. J. Mater. Sci. Technol., 2021, 82(0): 69-79. |
| [5] | Sateesh Bandaru, Narashima Murthy, Ravindra Kulkarni, Niall J. English. Magnetic ferrite/carbonized cotton fiber composites for improving electromagnetic absorption properties at gigahertz frequencies [J]. J. Mater. Sci. Technol., 2021, 86(0): 127-138. |
| [6] | Lieji Yang, Tianwei Deng, Zirui Jia, Xiaodi Zhou, Hualiang Lv, Yutao Zhu, Juncen Liu, Zhihong Yang. Hierarchical porous hollow graphitized carbon@MoS2 with wideband EM dissipation capability [J]. J. Mater. Sci. Technol., 2021, 83(0): 239-247. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
