J. Mater. Sci. Technol. ›› 2023, Vol. 132: 50-58.DOI: 10.1016/j.jmst.2022.05.044
• Research Article • Previous Articles Next Articles
Bofang Tiana, Zhenxin Huanga, Xilian Xub, Xiehong Caob, Hui Wanga,c, Tingting Xua, Dezhi Konga, Zhuangfei Zhanga, Jie Xua, Jinhao Zanga, Xinjian Lia, Ye Wanga,*(
)
Received:2022-04-10
Revised:2022-05-04
Accepted:2022-05-06
Published:2023-01-01
Online:2022-06-26
Contact:
Ye Wang
About author:* E-mail addresses: wangye@zzu.edu.cn (Y. Wang).Bofang Tian, Zhenxin Huang, Xilian Xu, Xiehong Cao, Hui Wang, Tingting Xu, Dezhi Kong, Zhuangfei Zhang, Jie Xu, Jinhao Zang, Xinjian Li, Ye Wang. Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes[J]. J. Mater. Sci. Technol., 2023, 132: 50-58.
Fig. 2. (a) Schematic diagram of the fabrication process of 3D Ag/CNT-GF nanostructures. (b-d) SEM, (e, f) TEM, (g) HRTEM images of 3D Ag/CNT-GF nanostructures. (h1) SEM image, and the elemental mapping images of (h2) C and (h3) Ag of 3D Ag/CNT-GF nanostructures.
Fig. 3. Structure characterization of 3D Ag/CNT-GF and 3D CNT-GF nanostructures. (a) XRD patterns. (b) XPS spectra of Ag 3d (c) BET analysis and (d) TGA curve of 3D Ag/CNT-GF nanostructures. Inset in Fig. 3(c) is the BJH adsorption pore-size distribution of the 3D Ag/CNT-GF nanostructures.
Fig. 4. Electrochemical performance of the Cu, 3D CNT-GF and 3D Ag/CNT-GF electrodes for Na plating/stripping. (a) CE of Cu, 3D CNT-GF and 3D Ag/CNT-GF at 3 mA cm?2 with 1 mAh cm?2. (b) Rate performance of Cu, 3D CNT-GF, and 3D Ag/CNT-GF at various current densities. Inset is an enlarged view to show the short circuit. (c) Voltage-capacity curves of Na metal plating on 3D Ag/CNT-GF and (d) 3D CNT-GF electrode. (e) EIS of 3D Ag/CNT-GF (red) and 3D CNT-GF (blue) electrodes before cycles and after 10th cycle. (f) Long cycle performance of the three electrodes at 3 mA cm?2 with 1 mAh cm?2. (g) Rate performance of Na@3D Ag/CNT-GF||NVP@C full cell at different current densities. (h) Long cycle performance of the Na@3D Ag/CNT-GF||NVP@C full cell at 100 mA g?1. Inset in (h) is a red LED powered by the full cell.
Fig. 5. Explore the mechanism of Na metal deposition behavior. In situ optical photographs of Na plating on (a) Cu, (b) 3D CNT-GF and (c) 3D Ag/CNT-GF electrodes captured by a digital camera. The current density is 3 mA cm?2. COMSOL simulation of the local current density distribution on the (d) 2D planar Cu (e) 3D CNT-GF and (f) 3D Ag/CNT-GF electrodes. Schematic diagram to show (g) uneven Na-ion flux distribution on 2D planar Cu foil, (h) reduced current density over 3D CNT-GF, and (i) uniform Na-ion flux distribution enabled by 3D Ag/CNT-GF nanostructure.
| [1] |
D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12 (2017) 194-206.
DOI URL |
| [2] |
G. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Nat. Nanotechnol. 9 (2014) 618-623.
DOI URL |
| [3] |
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Chem. Rev. 117 (2017) 10403-10473.
DOI URL |
| [4] | Y. Guo, H. Li, T. Zhai, Adv. Mater. 29 (2017) 170 0 0 07. |
| [5] |
R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan, Q. Zhang, Angew. Chem. Int. Ed. 56 (2017) 7764-7768.
DOI URL PMID |
| [6] |
D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo, Q. Zhang, Adv. Sci. 4 (2017) 1600168.
DOI URL |
| [7] |
J. Mohanta, H.J. Kim, S.M. Jeong, J.S. Cho, H.J. Ahn, J.H. Ahn, J.K. Kim, Chem. Eng. J. 391 (2020) 123510.
DOI URL |
| [8] | B.R. Sutherland, Joule 2 (2018) 589-591. |
| [9] |
K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang, C. Jin, G. Hou, H. Cao, L. Wu, G. Zheng, Y. Tang, X. Tao, J. Lu, Adv. Energy Mater. 9 (2019) 1900260.
DOI URL |
| [10] | X. Shen, H. Liu, X.B. Cheng, C. Yan, J.Q. Huang, Energy Storage Mater. 12 (2018) 161-175. |
| [11] | C. Ma, T. Xu, Y. Wang, Energy Storage Mater. 25 (2020) 811-826. |
| [12] | L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo, X. Shen, J.K. Kim, Energy Storage Mater. 27 (2020) 522-554. |
| [13] | B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Energy Storage Mater. 24 (2020) 22-51. |
| [14] |
Y. Xu, C. Wang, E. Matios, J. Luo, X. Hu, Q. Yue, Y. Kang, W. Li, Adv. Energy Mater. 10 (2020) 2002308.
DOI URL |
| [15] |
Y. Xie, Z. Han, H. Li, J. Hu, L. Zhang, A. Wang, S. Chang, J. Xu, C. Liu, Y. Lai, Z. Zhang, Chem. Eng. J. 427 (2022) 130959.
DOI URL |
| [16] |
Z. Zhang, Y. Chen, S. Sun, K. Sun, H. Sun, H. Li, Y. Yang, M. Zhang, W. Li, S. Chou, H. Liu, Y. Jiang, J. Mater. Sci. Technol. 119 (2022) 167-181.
DOI URL |
| [17] |
W. Ling, N. Fu, J. Yue, X.X. Zeng, Q. Ma, Q. Deng, Y. Xiao, L.J. Wan, Y.G. Guo, X. W. Wu, Adv. Energy Mater. 10 (2020) 1903966.
DOI URL |
| [18] |
J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard, J.G. Zhang, ACS Energy Lett. 3 (2018) 315-321.
DOI URL |
| [19] | T. Li, X.Q. Zhang, P. Shi, Q. Zhang, Joule 3 (2019) 2647-2661. |
| [20] |
E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, ACS Energy Lett. 2 (2017) 1321-1326.
DOI URL |
| [21] |
X. Ye, W. Xiong, T. Huang, X. Li, Y. Lei, Y. Li, X. Ren, J. Liang, X. Ouyang, Q. Zhang, J. Liu, Appl. Surf. Sci. 569 (2021) 150899.
DOI URL |
| [22] |
C. Wei, L. Tan, Y. Zhang, H. Jiang, B. Xi, S. Xiong, J. Feng, J. Mater. Sci. Technol. 115 (2022) 156-165.
DOI URL |
| [23] |
S.S. Chi, X.G. Qi, Y.S. Hu, L.Z. Fan, Adv. Energy Mater. 8 (2018) 1702764.
DOI URL |
| [24] |
W.S. Xiong, Y. Xia, Y. Jiang, Y. Qi, W. Sun, D. He, Y. Liu, X.Z. Zhao, ACS Appl. Mater. Interfaces 10 (2018) 21254-21261.
DOI URL |
| [25] | Y. Xu, A.S. Menon, P.P. R.M.L. Harks, D.C. Hermes, L.A. Haverkate, S. Unnikrishnan, F.M. Mulder, Energy Storage Mater. 12 (2018) 69-78. |
| [26] | J. Yan, G. Zhi, D. Kong, H. Wang, T. Xu, J. Zang, W. Shen, J. Xu, Y. Shi, S. Dai, X. Li, Y. Wang, J. Mater. Chem. A 8 (2020) 19843-19854. |
| [27] | C. Chu, N. Wang, L. Li, L. Lin, F. Tian, Y. Li, J. Yang, S.-x. Dou, Y. Qian, Energy Storage Mater. 23 (2019) 137-143. |
| [28] |
S.S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Adv. Funct. Mater. 27 (2017) 1700348.
DOI URL |
| [29] | Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, Y. Lu, H. Wang, K. Yan, X. Tao, Y. Cui, Proc. Natl Acad. Sci. U. S. A. 113 (2016) 2862-2867. |
| [30] |
D. Lin, Y. Liu, Z. Liang, H.W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 11 (2016) 626-632.
DOI URL |
| [31] |
S. Liu, S. Tang, X. Zhang, A. Wang, Q.H. Yang, J. Luo, Nano Lett. 17 (2017) 5862-5868.
DOI URL |
| [32] |
C. Wang, H. Wang, E. Matios, X. Hu, W. Li, Adv. Funct. Mater. 28 (2018) 1802282.
DOI URL |
| [33] | J. Yan, S. Huang, Y.V. Lim, T. Xu, D. Kong, X. Li, H.Y. Yang, Y. Wang, Mater. Today 54 (2022) 110-152. |
| [34] |
C. Sun, A. Lin, W. Li, J. Jin, Y. Sun, J. Yang, Z. Wen, Adv. Energy Mater. 10 (2019) 1902989.
DOI URL |
| [35] |
B. Wang, T. Jiang, L. Hou, H. Wang, T. Xu, Z. Zhang, D. Kong, X. Li, Y. Wang, Solid State Ion. 368 (2021) 115711.
DOI URL |
| [36] |
H. Wang, T. Jiang, B. Wang, L. Zhang, D. Kong, T. Xu, J. Zang, Z. Zhang, X. Li, Y. Wang, J. Power Sources 507 (2021) 230294.
DOI URL |
| [37] | K. Yan, Z. Lu, H.W. Lee, F. Xiong, P.C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 1 (2016) 16010. |
| [38] |
Q. Chen, B. Liu, L. Zhang, Q. Xie, Y. Zhang, J. Lin, B. Qu, L. Wang, B. Sa, D.L. Peng, Chem. Eng. J. 404 (2021) 126469.
DOI URL |
| [39] |
S. Liu, M. Bai, X. Tang, W. Wu, M. Zhang, H. Wang, W. Zhao, Y. Ma, Chem. Eng. J. 417 (2021) 128997.
DOI URL |
| [40] |
Z. Huang, Z. Wang, B. Tian, T. Xu, C. Ma, Z. Zhang, J. Zang, D. Kong, X. Li, Y. Wang, J. Mater. Sci. Technol. 118 (2022) 199-207.
DOI URL |
| [41] | C. Wei, L. Tan, Y. Tao, Y. An, Y. Tian, H. Jiang, J. Feng, Y. Qian, Energy Storage Mater. 34 (2021) 12-21. |
| [42] |
S. Wang, Y. Jie, Z. Sun, W. Cai, Y. Chen, F. Huang, Y. Liu, X. Li, R. Du, R. Cao, G. Zhang, S. Jiao, ACS Appl. Energy Mater. 3 (2020) 8688-8694.
DOI URL |
| [43] | K. Lu, S. Gao, G. Li, J. Kaelin, Z. Zhang, Y. Cheng, ACS Mater. Lett. 1 (2019) 303-309. |
| [44] |
N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, Adv. Mater. 28 (2016) 1853-1858.
DOI URL |
| [45] | J. Guo, S. Zhao, H. Yang, F. Zhang, J. Liu, J. Mater. Chem. A 7 (2019) 2184-2191. |
| [46] |
J. Pu, J. Li, Z. Shen, C. Zhong, J. Liu, H. Ma, J. Zhu, H. Zhang, P.V. Braun, Adv. Funct. Mater. 28 (2018) 1804133.
DOI URL |
| [47] |
P. Xue, S. Liu, X. Shi, C. Sun, C. Lai, Y. Zhou, D. Sui, Y. Chen, J. Liang, Adv. Mater. 30 (2018) 1804165.
DOI URL |
| [48] |
Z. Sun, H. Jin, Y. Ye, H. Xie, W. Jia, S. Jin, H. Ji, ACS Appl. Energy Mater. 4 (2021) 2724-2731.
DOI URL |
| [49] | W. Yang, W. Yang, L. Dong, G. Shao, G. Wang, X. Peng, Nano Energy 80 (2021) 105563. |
| [50] | H. Wang, Y. Wu, S. Liu, Y. Jiang, D. Shen, T. Kang, Z. Tong, D. Wu, X. Li, C.S. Lee, Small Methods 5 (2021) 2001050. |
| [51] | J. Wu, P. Zou, M. Ihsan-Ul-Haq, N. Mubarak, A. Susca, B. Li, F. Ciucci, J.K. Kim, Small 16 (2020) 2003815. |
| [52] | X. Li, G. Yang, S. Zhang, Z. Wang, L. Chen, Nano Energy 66 (2019) 104144. |
| [53] |
T. Maiyalagan, X. Dong, P. Chen, X. Wang, J. Mater. Chem. 22 (2012) 5286-5290.
DOI URL |
| [54] |
J. Liu, L. Zhang, H.B. Wu, J. Lin, Z. Shen, X.W. Lou, Energy Environ. Sci. 7 (2014) 3709-3719.
DOI URL |
| [55] | X. Wang, Z. Pan, Y. Wu, G. Xu, X. Zheng, Y. Qiu, M. Liu, Y. Zhang, W. Li, Nanoscale 10 (2018) 16562-16567. |
| [56] |
Z.X. Huang, Y. Wang, J.I. Wong, W.H. Shi, H.Y. Yang, Electrochim. Acta 167 (2015) 388-395.
DOI URL |
| [57] |
C. Lu, Z. Gao, B. Liu, Z. Shi, Y. Yi, W. Zhao, W. Guo, Z. Liu, J. Sun, Adv. Funct. Mater. 31 (2021) 2101233.
DOI URL |
| [58] | N. Zhu, X. Mao, G. Wang, M. Zhu, H. Wang, G. Xu, M. Wu, H.K. Liu, S.X. Dou, C. Wu, J. Mater. Chem. A 9 (2021) 13200-13208. |
| [59] | D. Kong, Y. Wang, S. Huang, B. Zhang, Y.V. Lim, G.J. Sim, Y.A.P. Valdivia, Q. Ge, H.Y. Yang, ACS Nano 14 (2020) 9675-9686. |
| [60] | Y. Wang, Y.V. Lim, S. Huang, M. Ding, D. Kong, Y. Pei, T. Xu, Y. Shi, X. Li, H.Y. Yang, Nanoscale 12 (2020) 4341-4351. |
| [61] | L. Mo, A.L. Chen, Y. Ouyang, W. Zong, Y.E. Miao, T. Liu, ACS Appl. Mater. Inter- faces 13 (2021) 48634-48642. |
| [62] |
J. Xu, H. Tang, T. Xu, D. Wu, Z. Shi, Y. Tian, X. Li, Ionics 23 (2017) 3273-3280 (Kiel).
DOI URL |
| [63] |
Y. Wang, D. Kong, W. Shi, B. Liu, G.J. Sim, Q. Ge, H.Y. Yang, Adv. Energy Mater. 6 (2016) 1601057.
DOI URL |
| [64] |
Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, H. Yao, P.C. Hsu, S. Chu, Y. Cui, Nano Lett. 15 (2015) 2910-2916.
DOI URL PMID |
| [65] |
J. Lin, D. Ma, Y. Li, P. Zhang, H. Mi, L. Deng, L. Sun, X. Ren, Dalton Trans. 46 (2017) 13101-13107.
DOI URL |
| [66] | B.N. Yun, H.L. Du, J.Y. Hwang, H.G. Jung, Y.K. Sun, J. Mater. Chem. A 5 (2017) 2802-2810. |
| [67] |
L. Hou, T. Xu, R. Liu, H. Yuan, D. Kong, W. Shen, J. Zang, X. Li, Y. Wang, J. Am. Ceram. Soc. 104 (2020) 1526-1538.
DOI URL |
| [68] | W. Shen, H. Li, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, J. Mater. Chem. A 3 (2015) 15190-15201. |
| [69] |
J. Hu, S. Zhong, T. Yan, J. Power Sources 508 (2021) 230342.
DOI URL |
| [70] |
R. Zhang, X.B. Cheng, C.Z. Zhao, H.J. Peng, J.L. Shi, J.Q. Huang, J. Wang, F. Wei, Q. Zhang, Adv. Mater. 28 (2016) 2155-2162.
DOI URL |
| [71] |
H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, J. Wang, H. Wang, F. Shi, D. Boyle, Y. Cui, Adv. Energy Mater. 9 (2019) 1900858.
DOI URL |
| [72] |
Q. Li, S. Zhu, Y. Lu, Adv. Funct. Mater. 27 (2017) 1606422.
DOI URL |
| [73] | M. Li, B. Sun, Z. Ao, T. An, G. Wang, J. Mater. Chem. A 8 (2020) 10199-10205. |
| [74] |
H. Yang, L. Zhang, H. Wang, S. Huang, T. Xu, D. Kong, Z. Zhang, J. Zang, X. Li, Y. Wang, J. Colloid Interface Sci. 611 (2022) 317-326.
DOI URL |
| [75] |
Z. Xie, X. An, Z. Wu, X. Yue, J. Wang, X. Hao, A. Abudula, G. Guan, J. Mater. Sci. Technol. 74 (2021) 119-127.
DOI URL |
| [1] | Zhenxin Huang, Zixuan Wang, Bofang Tian, Tingting Xu, Caiyun Ma, Zhuangfei Zhang, Jinhao Zang, Dezhi Kong, Xinjian Li, Ye Wang. Three-dimensional Au/carbon nanotube-graphene foam hybrid nanostructure for dendrite free sodium metal anode with long cycle stability [J]. J. Mater. Sci. Technol., 2022, 118(0): 199-207. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
