J. Mater. Sci. Technol. ›› 2022, Vol. 130: 184-192.DOI: 10.1016/j.jmst.2022.05.021
• Research Article • Previous Articles Next Articles
Yimeng Nia, Lexin Liua, Jianying Huanga, Shuhui Lib, Zhong Chenc, Weiying Zhanga, Yuekun Laia,*()
Received:
2022-01-11
Revised:
2022-03-26
Accepted:
2022-05-03
Published:
2022-12-10
Online:
2022-12-07
Contact:
Yuekun Lai
About author:
∗ E-mail address: yklai@fzu.edu.cn (Y. Lai)Yimeng Ni, Lexin Liu, Jianying Huang, Shuhui Li, Zhong Chen, Weiying Zhang, Yuekun Lai. Rational designed microstructure pressure sensors with highly sensitive and wide detection range performance[J]. J. Mater. Sci. Technol., 2022, 130: 184-192.
Fig. 1. Schematic diagram of pressure sensor fabrication procedure. (a) The fabrication of microstructured PDMS sponge by mixing PDMS, NaCl, and CAM. (b) The preparation of CNTs/GNP Micro@Sponge by layer-by-layer electrostatic self-assembly. (c) The pressure sensor is packaged with ITO-PET film.
Fig. 2. SEM picture of PDMS sponge fabricated without sandpapers treatment (a) and PDMS sponge fabricated by sandpaper treatment (b), the red-circled area was an indentation induced by the convex structure of sandpaper on the sponge surface. SEM images of CNTs-coated sponge (c) and CNTs/GNP-coated sponge (d). (e-h) corresponding high magnification image. 3D profile of sponge surface without sandpaper treated (i) and with sandpaper-treated (j).
Fig. 3. (a-c) Schematic diagram of sensor loading tiny and high pressure. Circuit diagram of sensor mechanism for without pressure (d) and with pressure (e). RTC, RS and RBC correspond to the top contact resistance, the CNTs/GNP Micro@Sponge resistance and the bottom contact resistance, respectively.
Fig. 4. (a) Current response curve at a pressure range from 0 to 160 kPa, the inset was a partial enlargement of the pressure range of 50-110 kPa. (b) Response time at 50 kPa. (c) Contraction of current signals when loading 20 kPa and 50 kPa. (d) Different pressure detection range from 10 kPa to 40 kPa for a mutative current pulse. (e) Pressure testing at the pressure of 80 kPa, 120 kPa and 140 kPa. (f) The cyclic current response to 100 kPa at different frequencies, 0.125, 0.25, and 0.3 Hz, respectively. (g) Sensing stability test of cyclic current response for 1400 cycles at loading 40 kPa, inset: magnified view of 10 cycles for the (374-384 cycles) and (1080-1090 cycles) stages, respectively.
Fig. 5. The real-time response detection signal of the pressure sensor to the lighter weight object loading, (a) paper (9 mg), (b) screw (80 mg) and (c) rotor (4 g), (d) I-V changing curve when sensor loading different weights (0-100 g). Current responses of finger touching (e), breathing (f) and wrist pulse (g). (h) Current response for pressing the sponge at 0.7 MPa pressure for 6 cycles. (i) The sensitivity and sensing range of the CNTs/GNP Micro@Sponge pressure sensor are compared with other studies.
Fig. 6. Current signals of durability test for press (a), bending (b), twist (c) of the sensor. (d) Photographe of different fingertip force tests. (e) Display of different finger squeezing produced by different gestures. (f) Schematic diagram of 3 × 3 panel sensors arrays for space detection. (g) Photograph of 3 × 3 sponge integrated detection. (h) The corresponding pressure distribution mapping from the sensing responses.
[1] |
X. Fan, Y. Ding, Y. Liu, J. Liang, Y. Chen, ACS Nano 13 (2019) 8124-8134.
DOI URL |
[2] |
W. Chem, X. Yan, J. Mater. Sci. Technol. 43 (2020) 175-188.
DOI URL |
[3] |
T. Zhu, Y. Cheng, C. Cao, J. Mao, L. Li, J. Huang, S. Gao, X. Dong, Z. Chen, Y. Lai, Chem. Eng. J. 385 (2020) 123912.
DOI URL |
[4] |
Z. Gao, Z. Lou, W. Han, G. Shen, ACS Appl. Mater. Interfaces 12 (2020) 24339-24347.
DOI URL |
[5] |
Y. Ni, J. Huang, S. Li, X. Dong, T. Zhu, W. Cai, Z. Chen, Y. Lai, ACS Appl. Mater. Interfaces 13 (2021) 53271-53281.
DOI URL |
[6] |
J. Feng, Y. Tian, S. Wang, M. Xiao, Z. Hui, C. Hang, W. Duley, Y. Zhou, J. Mater. Sci. Technol. 84 (2021) 139-146.
DOI URL |
[7] |
Y. Ni, J. Huang, S. Li, X. Wang, L. Liu, M. Wang, Z. Chen, X. Li, Y. Lai, ACS Appl. Mater. Interfaces 13 (2021) 4740-4749.
DOI URL |
[8] |
P. Wei, X. Yang, Z. Cao, X. Guo, H. Jiang, Y. Chen, M. Morikado, X. Qiu, D. Yu, Adv. Mater. Technol. 4 (2019) 1900315.
DOI URL |
[9] |
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li, J. Li, Y. Lai, Nano-Micro Lett. 14 (2022) 61.
DOI URL |
[10] |
H. Lim, H. Kim, R. Qazi, Y. Kwon, J. Jeong, W. Yeo, Adv. Mater. 32 (2019) 1901924.
DOI URL |
[11] |
Y. Jang, S. Kim, G. Spinks, S. Kim, Adv. Mater. 32 (2020) 1902670.
DOI URL |
[12] |
Y. Ji, L. Huang, J. Hu, C. Streb, Y. Song, Energy Environ. Sci. 8 (2015) 776-789.
DOI URL |
[13] |
J. Wang, H. Lou, J. Meng, Z. Peng, B. Wang, J. Wan, Sensor Actuators B 305 (2020) 127529.
DOI URL |
[14] |
H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, S. Wang, Adv. Mater. 30 (2018) 1800295.
DOI URL |
[15] |
F. Zhang, Y. Feng, M. Qin, L. Gao, Z. Li, F. Zhao, Z. Zhang, F. Lv, W. Feng, Adv. Funct. Mater. 29 (2019) 1901383.
DOI URL |
[16] |
C. Huang, S. Witomska, A. Aliprandi, M. Stoeckel, M. Bonini, A. Ciesielski, P. Samori, Adv. Mater. 31 (2019) 1804600.
DOI URL |
[17] |
W. Deng, T. Yang, L. Jin, H.Huang C.Yan, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao, H. Zhang, W. Yang, Nano Energy 55 (2019) 516-525.
DOI URL |
[18] | S. Karan, S. Maiti, J. Lee, Y. Mishra, B. Khatua, J. Kim, Adv. Funct. Mater. 30 (2020) 2004 4 46. |
[19] |
S. Ruth, L. Beker, H. Tran, V. Feig, N. Matsuhisa, Z. Bao, Adv. Funct. Mater. 30 (2020) 1903100.
DOI URL |
[20] |
B. Dong, Y. Yang, Q. Shi, S. Xu, Z. Sun, S. Zhu, Z. Zhang, D. Kwong, G. Zhou, C. Lee, K. Ang, ACS Nano 14 (2020) 8915-8930.
DOI URL |
[21] |
S. Veeralingam, S. Priya, S. Badhulika, Chem. Eng. J. 389 (2020) 124415.
DOI URL |
[22] |
C. Wu, A. Wang, W. Ding, H. Guo, Z. Wang, Adv. Energy Mater. 9 (2019) 1802906.
DOI URL |
[23] | Y. Guo, S. Gao, W. Yue, C. Zhang, Y. Li, ACS Appl. Mater. Interfaces 11 (2019) 4 8594-4 8603. |
[24] |
W. Chen, X. Yan, J. Mater. Sci. Technol. 43 (2020) 175-188.
DOI URL |
[25] |
L. Yang, Y. Liu, C. Filipe, D. Ljubic, Y. Luo, H. Zhu, J. Yan, S. Zhu, ACS Appl. Mater. Interfaces 11 (4) (2019) 4318-4327.
DOI URL |
[26] |
J. Qin, L. Yin, Y. Hao, S. Zhong, D. Zhang, K. Bi, Y. Zhang, Y. Zhao, Z. Dang, Adv. Mater. 33 (2021) 2008267.
DOI URL |
[27] |
S. Zhang, K. Sun, H. Liu, X. Chen, Y. Zheng, X. Shi, D. Zhang, L. Mi, C. Liu, C. Shen, Chem. Eng. J. 387 (2020) 124045.
DOI URL |
[28] | X. Liang, H. Li, J. Dou, Q. Wang, W. He, C. Wang, D. Li, J. Lin, Y. Zhang, Adv. Mater. 32 (2020) 20 0 0165. |
[29] |
D. Zhang, Z. Xu, Z. Yang, X. Song, Nano Energy 67 (2020) 104251.
DOI URL |
[30] | M. Hwang, M. Heiranian, Y. Kim, S. You, J. Leem, A. Taqieddin, V. Faramarzi, Y. Jing, I. Park, A. van der Zande, S. Nam, N. Aluru, R. Bashir, Nat. Commun. 11 (2020) 201543. |
[31] |
Y. Park, Y. Shin, J. Park, Y. Lee, M. Kim, Y. Kim, S. Na, S. Ghosh, H. Ko, ACS Nano 14 (2020) 7101-7110.
DOI URL |
[32] |
R. Deng, J. Xu, G. Yi, J. Kim, J. Zhu, Adv. Funct. Mater. 31 (2021) 2008169.
DOI URL |
[33] |
J. Lee, J. Kim, Y. Shin, I. Jung, Compos. Part B 177 (2019) 107364.
DOI URL |
[34] |
M. Sadi, J. Pan, A. Xu, D. Cheng, G. Cai, X. Wang, Cellulose 26 (2019) 7569-7579.
DOI URL |
[35] |
W. Song, B. Wang, L. Fan, F. Ge, C. Wang, Appl. Surf. Sci. 463 (2019) 403-411.
DOI URL |
[36] |
L. Liu, Z. Shen, X. Zhang, H. Ma, J. Colloid Interface Sci. 582 (2021) 12-21.
DOI URL |
[37] |
N. Luo, Y. Huang, J. Liu, S. Chen, C. Wong, N. Zhao, Adv. Mater. 29 (2017) 1702675.
DOI URL |
[38] |
K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, H. Friedrich, Adv. Funct. Mater. 26 (2016) 586-593.
DOI URL |
[39] |
M. Lin, Y. Gai, D. Xiao, H. Tan, Y. Zhao, Chem. Phys. Lett. 713 (2018) 98-104.
DOI URL |
[40] |
S. Jang, Y. Kim, D. Kim, H. Kim, S. Jo, ACS Appl. Mater. Interfaces 4 (2012) 3500-3507.
DOI URL |
[41] |
D. Janas, K. Koziol, Nanoscale 6 (2014) 3037-3045.
DOI PMID |
[42] |
Z. Ma, A. Wei, J. Ma, L. Shao, H. Jiang, D. Dong, Z. Ji, Q. Wang, S. Kang, Nanoscale 10 (2018) 7116-7126.
DOI URL |
[43] | M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, ACS Nano 13 (2019) 1940-1952. |
[44] |
J. Xiao, Y. Tan, Y. Song, Q.A. Zheng, J. Mater. Chem. A 6 (2018) 9074-9080.
DOI URL |
[45] |
A. Chhetry, S. Sharma, H. Yoon, S. Ko, J. Park, Adv. Funct. Mater. 30 (2020) 1910020.
DOI URL |
[46] |
J. Huang, D. Li, M. Zhao, H. Ke, A. Mensah, P. Lv, X. Tian, Q. Wei, Chem. Eng. J. 373 (6) (2019) 1357-1366.
DOI URL |
[47] |
L. Guan, L. Zhao, Y. Wan, L. Tang, Nanoscale 10 (2018) 14788-14811.
DOI URL |
[48] |
B. Thompson, T. Horozov, S. Stoyanov, V. Paunov, J. Mater. Chem. A 7 (2019) 8030-8049.
DOI URL |
[49] | G. Li, D. Chen, C. Li, W. Liu, H. Liu, Adv. Sci. 7 (2020) 20 0 0154. |
[50] |
S. Pan, F. Zhang, P. Cai, M. Wang, K. He, Y. Luo, Z. Li, G. Chen, S. Ji, Z. Liu, X. Loh, X. Chen, Adv. Funct. Mater. 30 (2020) 1909540.
DOI URL |
[51] | C. Lupan, R. Khaledialidusti, A. Mishra, V. Postica, M. Terasa, N. Magariu, T. Pau-porte, B. Viana, J. Drewes, A. Vahl, F. Faupel, R. Adelung, ACS Appl. Mater. In-terfaces 12 (2020) 24 951-24 964. |
[52] |
X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou, J. Huang, H. Wang, C. Xie, D. Zeng, Small 15 (2019) 1804559.
DOI URL |
[53] | Z. Han, H.Xiao Li, J. Song, H. Lo, B. Cai, S. Chen, Y. Ma, Y. Feng, X. ACS Appl. Mater. Interfaces 11 (2019) 33370-33379. |
[54] |
H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng, L. Li, ACS Appl. Mater. Interfaces 10 (2018) 20826-20834.
DOI URL |
[55] |
L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, Nat. Commun. 5 (2014) 3002.
DOI URL |
[56] |
Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, T. Ren, ACS Nano 12 (2018) 2346-2354.
DOI PMID |
[57] |
W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li, X. Zhang, ACS Nano 9 (2015) 4244-4251.
DOI URL |
[58] |
H. Park, Y. Jeong, J. Yun, S. Hong, S. Jin, S. Lee, G. Zi, J. Ha, ACS Nano 9 (2015) 9974-9985.
DOI URL |
[59] |
C. Mu, Y. Song, W. Huang, A. Ran, R. Sun, W. Xie, H. Zhang, Adv. Funct. Mater. 28 (2018) 1707503.
DOI URL |
[60] |
Y. Wang, M. Chao, P. Wan, L.A. Zhang, Nano Energy 70 (2020) 104560.
DOI URL |
[61] |
M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, C. Du, J. Sun, W. Hu, Z.L. Wang, Adv. Mater. 29 (2017) 1703700.
DOI URL |
[62] |
L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang, Y.-Q. Chen, Y. Yang, T.-L. Ren, ACS Nano 11 (2017) 8790-8795.
DOI URL |
[1] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[2] | Jun Wei Chua, Xinwei Li, Tao Li, Beng Wah Chua, Xiang Yu, Wei Zhai. Customisable sound absorption properties of functionally graded metallic foams [J]. J. Mater. Sci. Technol., 2022, 108(0): 196-207. |
[3] | Kun Liu, Jia-ao Wang, Hongfei Zheng, Xiaodong Sun, Zhimo Yang, Jianzong Man, Xinyu Wang, Juncai Sun. Direct synthesis of tin spheres/nitrogen-doped porous carbon composite by self-formed template method for enhanced lithium storage [J]. J. Mater. Sci. Technol., 2022, 104(0): 88-97. |
[4] | Linggen Kong, Inna Karatchevtseva, Tao Wei, Nicholas Scales. Synthesis of hierarchical mesoporous Ln2Ti2O7 (Ln = Y, Tb-Yb) pyrochlores and uranyl sorption properties [J]. J. Mater. Sci. Technol., 2022, 113(0): 22-32. |
[5] | Li-Chuan Jia, Chang-Ge Zhou, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection [J]. J. Mater. Sci. Technol., 2022, 110(0): 35-42. |
[6] | Li Cheng, Chengbao Liu, Hao Wu, Haichao Zhao, Feixiong Mao, Liping Wang. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings [J]. J. Mater. Sci. Technol., 2021, 80(0): 36-49. |
[7] | S. Bancora, C. Binetruy, S. Advani, S. Comas-Cardona. Inverse methodology as applied to reconstruct local textile features from measured pressure field [J]. J. Mater. Sci. Technol., 2021, 71(0): 241-247. |
[8] | Yuanyuan Liu, Yanmei Zheng, Weijie Zhang, Zhengbin Peng, Hang Xie, YiXuan Wang, Xinli Guo, Ming Zhang, Rui Li, Ying Huang. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation [J]. J. Mater. Sci. Technol., 2021, 95(0): 127-135. |
[9] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
[10] | Su Jian, Fang Changqing, Yang Mannan, Cheng Youliang, Wang Zhen, Huang Zhigang, You Caiyin. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method [J]. J. Mater. Sci. Technol., 2020, 38(0): 183-188. |
[11] | Jun-Tao Luo, Guo-Long Zang, Chuang Hu. An efficient 3D ordered mesoporous Cu sphere array electrocatalyst for carbon dioxide electrochemical reduction [J]. J. Mater. Sci. Technol., 2020, 55(0): 95-106. |
[12] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[13] | Wufan Chen, Xin Yan. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review [J]. J. Mater. Sci. Technol., 2020, 43(0): 175-188. |
[14] | Fuwei Xiang, Xiuhua Chen, Jie Yu, Wenhui Ma, Yuping Li, Ni Yang. Synthesis of three-dimensionally ordered porous perovskite type LaMnO3 for Al-air battery [J]. J. Mater. Sci. Technol., 2018, 34(9): 1532-1537. |
[15] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||