J. Mater. Sci. Technol. ›› 2022, Vol. 130: 176-183.DOI: 10.1016/j.jmst.2022.05.016
• Research Article • Previous Articles Next Articles
Mengxiao Suna, Derong Wangb,*(), Ziming Xiongb, Zhongwei Zhangb, Long Qina, Chaochan Chenc, Fan Wua,b,*(
), Panbo Liud,e,*(
)
Received:
2022-04-28
Revised:
2022-05-11
Accepted:
2022-05-12
Published:
2022-12-10
Online:
2022-12-07
Contact:
Derong Wang,Fan Wu,Panbo Liu
About author:
E-mail addresses: liupanbo@nwpu.edu.cn (P. Liu)Mengxiao Sun, Derong Wang, Ziming Xiong, Zhongwei Zhang, Long Qin, Chaochan Chen, Fan Wu, Panbo Liu. Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption[J]. J. Mater. Sci. Technol., 2022, 130: 176-183.
Fig. 2. SEM images, TEM images, and the corresponding element distribution maps of 1D NiO (a-c), NiO@PDA (d, e), NiO@PDA/CoNi-MOFs (f, g), and the multi-dimensional Ni@C-CoNi composites (h-k).
Fig. 3. XRD patterns of 1D NiO, CoNi-MOFs, NiO@PDA/CoNi-MOFs, 0D CoNi alloy, 1D Ni@C, and the multi-dimensional Ni@C-CoNi (a, b). Raman spectrum of 0D CoNi alloy, 1D Ni@C, and the multi-dimensional Ni@C-CoNi (c). C 1s spectrum (d), N 1s spectrum (e), Co 2p spectrum (f), and Ni 2p spectrum (g) of the multi-dimensional Ni@C-CoNi. Hysteresis loops (h) and the enlarged view of the hysteresis loops (i) of 0D CoNi alloy, 1D Ni@C, and the multi-dimensional Ni@C-CoNi.
Fig. 5. Relative permittivity (a, b), the relative permeability (c, d), and tangent loss (e, f) of 0D CoNi alloy, 1D core-shell Ni@C, and the multi-dimensional Ni@C-CoNi composites, respectively.
Fig. 6. Constant value (a) and attenuation constant (b) of 0D CoNi alloy, 1D core-shell Ni@C, and the multi-dimensional Ni@C-CoNi composites; the possible microwave absorption mechanism of the multi-dimensional Ni@C-CoNi composites (c).
[1] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem.-Int. Edit. 61 (2022) e202200705. |
[2] |
Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, R.C. Che, Adv. Mater. 34 (2022) 2107538.
DOI URL |
[3] |
K.Y. Butt, S. Aman, A.A AlObaid, T.I. Al-Muhimeed, A. Rehman, H.H. Hegazy, N. Ahmad, A.R. Khan, S.R. Ejaz, Appl. Phys. A 127 (2021) 714.
DOI URL |
[4] |
J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu, M. Wang, Small 8 (2012) 1214-1221.
DOI URL |
[5] |
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Adv. Funct. Mater. 28 (2018) 1800761.
DOI URL |
[6] | F. Zhang, W. Cui, B.B. Wang, B.H. Xu, X.H. Liu, X.H. Liu, Z.R. Jia, G.L. Wu, Com-pos. Pt. B-Eng. 204 (2021) 108491. |
[7] |
W.H. Huang, W.M. Gao, S.W. Zuo, L.X. Zhang, K. Pei, P.B. Liu, R.C. Che, H.B. Zhang, J. Mater. Chem. A 10 (2022) 1290-1298.
DOI URL |
[8] |
R.W. Shu, W.J. Li, Y. Wu, J.B. Zhang, G.Y. Zhang, Chem. Eng. J. 362 (2019) 513-524.
DOI URL |
[9] |
H.X. Xu, G.Z. Zhang, Y. Wang, M.Q. Ning, B. Ouyang, Y. Zhao, Y. Huang, P.B. Liu, Nano-Micro Lett. 14 (2022) 102.
DOI URL |
[10] |
X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, X.M. Wu, Carbon 179 (2021) 566-578.
DOI URL |
[11] |
R.W. Shu, N.N. Li, X.H. Li, J.J. Sun, J. Colloid Interface Sci. 606 (2022) 1918-1927.
DOI URL |
[12] |
R.W. Shu, X.H. Li, K.H. Tian, J.J. Shi, Compos. Pt. B-Eng. 228 (2022) 109423.
DOI URL |
[13] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[14] |
L. Cai, F. Pan, X.J. Zhu, Y.Y. Dong, Y.Y. Shi, Z. Xiang, J. Cheng, H.J. Jiang, Z. Shi, W. Lu, Chem. Eng. J. 434 (2022) 133865.
DOI URL |
[15] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 4 86-4 90.
DOI URL |
[16] | X.A. Li, X.Y. Qu, Z. Xu, W.Q. Dong, F.Y. Wang, W.C. Guo, H.Y. Wan, Y.C. Du, ACS Appl. Mater. Interfaces 22 (2019) 19267-19276. |
[17] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16 (2004) 401-405.
DOI URL |
[18] |
Y.M. Chen, H. Luo, H.T. Guo, K.M. Liu, C.T. Mei, Y. Li, G.G. Duan, S.J. He, J.Q. Han, J.J. Zheng, S.H. Jiang, Carbohydr. Polym. 276 (2022) 118799.
DOI URL |
[19] |
R.W. Shu, Y. Wu, X.H. Li, N.N. Li, J.J. Shi, J. Colloid Interface Sci. 613 (2022) 477-487.
DOI URL |
[20] |
P.A. Yang, Y.X. Huang, R. Li, X. Huang, H.B. Ruan, M.J. Shou, W.J. Li, Y.X. Zhang, N. Li, L.C. Dong, Chem. Eng. J. 430 (2022) 132878.
DOI URL |
[21] |
S.J. Wang, D.S. Li, Y. Zhou, L. Jiang, ACS Nano 14 (2020) 8634-8645.
DOI URL |
[22] |
Z.J. Liao, M.L. Ma, Y.X. Bi, Z.Y. Tong, K.L. Chung, Z.J. Li, Y. Ma, B.L. Gao, Z.K. Cao, R.R. Sun, X. Zhong, J. Colloid Interface Sci. 606 (2022) 709-718.
DOI URL |
[23] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[24] |
F. Pan, L. Cai, Y.Y. Dong, X.J. Zhu, Y.Y. Shi, W. Lu, J. Mater. Sci. Technol. 101 (2022) 85-94.
DOI URL |
[25] |
X.H. Li, L. Wang, X. Li, J. Zhang, M. Wang, R.C. Che, Carbon 172 (2021) 15-25.
DOI URL |
[26] | Y.X. Bi, M.L. Ma, Z.J. Liao, Z.Y. Tong, Y. Chen, R.Z. Wang, Y. Ma, G.L. Wu, J. Colloid Interface Sci. 605 (2022) 4 83-4 92. |
[27] |
X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, G.B. Ji, Y.W. Du, Chem. Eng. J. 381 (2020) 122589.
DOI URL |
[28] |
W. Liu, Q.W. Shao, G.B. Ji, X.H. Liang, Y. Cheng, B. Quan, Y.W. Du, Chem. Eng. J. 313 (2017) 734-744.
DOI URL |
[29] |
D.W. Liu, Y.C. Du, P. Xu, F.Y. Wang, Y.H. Wang, L.R. Cui, H.H. Zhao, X.J. Han, J. Mater. Chem. A 9 (2021) 5086-5096.
DOI URL |
[30] | P.B. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, J.H. Luo, ACS Appl. Mater. Inter-faces 11 (2019) 25624-25635. |
[31] |
S. Chen, Y. Zheng, B. Zhang, Y.Y. Feng, J.X. Zhu, J.S. Xu, C. Zhang, W. Feng, T.X. Liu, ACS Appl. Mater. Interfaces 11 (2019) 1384-1393.
DOI URL |
[32] |
L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang, Y. Yang, G.B. Ji, Adv. Mater. 34 (2022) 2106195.
DOI URL |
[33] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[34] | M.Q. Ning, Q.K. Man, G.G. Tan, Z.K. Lei, J.B. Li, R.W. Li, ACS Appl. Mater. Inter-faces 12 (2020) 20785-20796. |
[35] |
M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou, C.Z. Wang, M.S. Cao, F. Rehman, H.B. Jin, Nanoscale 7 (2015) 15734-15740.
DOI URL |
[36] |
J. Cheng, L. Cai, Y.Y. Shi, F. Pan, Y.Y. Dong, X.J. Zhu, H.J. Jiang, X. Zhang, Z. Xiang, W. Lu, Chem. Eng. J. 431 (2022) 134284.
DOI URL |
[37] |
M.Q. Ning, P.H. Jiang, W. Ding, X.B. Zhu, G.G. Tan, Q.K. Man, J.B. Li, R.W. Li, Adv. Funct. Mater. 31 (2021) 2011229.
DOI URL |
[38] |
C.X. Wang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang, M.L. Tian, B.B. Wang, G.L. Wu, J. Mater. Sci. Technol. 108 (2022) 236-243.
DOI URL |
[39] |
Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, PH. Gao, Carbon 187 (2022) 404-414.
DOI URL |
[40] |
J. Zhao, Y. Wei, Y. Zhang, Q. Zhang, J. Mater. Sci. Technol. 126 (2022) 141-151.
DOI |
[41] |
J.J. Wang, S.L. Yu, Q.Q. Wu, Y. Li, F.Y. Li, X. Zhou, Y.H. Chen, B.Z. Li, P.B. Liu, J. Mater. Sci. Technol. 115 (2022) 71-80.
DOI URL |
[42] |
R.R. Cheng, Y. Wang, X.C. Di, Z. Lu, P. Wang, M.L. Ma, J.R. Ye, J. Colloid Interface Sci. 609 (2022) 224-234.
DOI URL |
[43] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano-Micro Lett. 14 (2022) 51. |
[44] |
Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951.
DOI URL |
[45] |
T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu, S.Y. Gao, J.W. Gu, Chin. J. Polym. Sci. 40 (2022) 248-255.
DOI URL |
[46] |
J. Zhao, J. Zhang, L. Wang. J. Li. T. Feng, J. Fan, L. Chen, J. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[47] |
J.B. Chen, J. Zheng, Q.Q. Huang, F. Wang, G.B. Ji, ACS Appl. Mater. Interfaces 13 (2021) 36182-36189.
DOI URL |
[48] |
Y.L. Wang, G.S. Wang, X.J. Zhang, C. Gao, J. Mater. Sci. Technol. 103 (2022) 34-41.
DOI URL |
[49] |
Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You, R.C. Che, Adv. Funct. Mater. 29 (2019) 1901448.
DOI URL |
[50] | M.Q. Ning, Z.K. Lei, G.G. Tan, Q.K. Man, J.B. Li, R.W. Li, ACS Appl. Mater. Inter-faces 12 (2021) 47061-47071. |
[51] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413-431.
DOI URL |
[52] |
S. Huang, L. Wang, Y.C. Li, C.B. Liang, J.L. Zhang, J. Appl. Polym. Sci. 138 (2021) 50649.
DOI URL |
[1] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[2] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[3] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[4] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[5] | Han Li, Hui Li, Ziqiang Wu, Lili Zhu, Changdian Li, Shuai Lin, Xuebin Zhu, Yuping Sun. Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors [J]. J. Mater. Sci. Technol., 2022, 123(0): 34-40. |
[6] | Long Xia, Yuming Feng, Biao Zhao. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough [J]. J. Mater. Sci. Technol., 2022, 130(0): 136-156. |
[7] | Jinbo Cheng, Bowen Liu, Yanqin Wang, Haibo Zhao, Yuzhong Wang. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption [J]. J. Mater. Sci. Technol., 2022, 130(0): 157-165. |
[8] | Qian Liu, Liang Tang, Jinzhe Li, Yao Chen, Zhengkang Xu, Jiatong Li, Xinyu Chen, Fanbin Meng. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption and heat insulation performance [J]. J. Mater. Sci. Technol., 2022, 130(0): 166-175. |
[9] | Yupeng Shi, Dan Li, Haoxu Si, Zhiyang Jiang, Mengyuan Li, Chunhong Gong. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum [J]. J. Mater. Sci. Technol., 2022, 130(0): 249-255. |
[10] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[11] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[12] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
[13] | Meng Zhu, Yuting Lei, Heng Wu, Luo Kong, Hailong Xu, Xuanxuan Yan, Yongjian Xu, Lei Dai. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials [J]. J. Mater. Sci. Technol., 2022, 129(0): 215-222. |
[14] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
[15] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||