J. Mater. Sci. Technol. ›› 2022, Vol. 130: 166-175.DOI: 10.1016/j.jmst.2022.05.014
• Research Article • Previous Articles Next Articles
Qian Liua, Liang Tanga, Jinzhe Lia, Yao Chena, Zhengkang Xua, Jiatong Lia, Xinyu Chena, Fanbin Menga,b,*()
Received:
2022-04-11
Revised:
2022-05-05
Accepted:
2022-05-06
Published:
2022-12-10
Online:
2022-12-07
Contact:
Fanbin Meng
About author:
∗ E-mail address: mengfanbin_wing@126.com (F. Meng)Qian Liu, Liang Tang, Jinzhe Li, Yao Chen, Zhengkang Xu, Jiatong Li, Xinyu Chen, Fanbin Meng. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption and heat insulation performance[J]. J. Mater. Sci. Technol., 2022, 130: 166-175.
Fig. 1. SEM images of (a) RGO@ANF-0, (b) RGO@ANF-10, (c) RGO@ANF-20, (d) RGO@ANF-30, (e) RGO@ANF-40, and (f) RGO@ANF-50. TEM images of (g, h) RGO@ANF-40. (i) FTIR spectra, (j) XRD patterns, and (k) Raman spectra of all RGO@ANFs.
Fig. 2. Compression stress (σ)-strain (ε) curves, (a) RGO@ANF-0, (b) RGO@ANF-10, (c) RGO@ANF-20, (d) RGO@ANF-30, (e) RGO@ANF-40, and (f) RGO@ANF-50. (g) Maximum stress at strains of 30%, 50%, and 70%, (h) cyclic compression stress-strain curves of RGO@ANF-40.
Fig. 8. Thermal infrared images of all aerogels with the temperature of the warm table at (a, b) 150 °C and (c, d) 250 °C, and R0 to R50 represent RGO@ANF-0 to RGO@ANF-50 respectively. (e) Temperature-time curves of all aerogels and warm tables. (f) Thermal conductivity of RGO@ANF-0 and RGO@ANF-40. (g) Diagram of aerogels thermal insulation mechanism.
[1] |
C. Wu, Z.F. Chen, M.L. Wang, X. Cao, Y. Zhang, P. Song, T.Y. Zhang, X.L. Ye, Y. Yang, W.H. Gu, J.D. Zhou, Y.Z. Huang, Small 16 (2020) 2001686.
DOI URL |
[2] |
Y.N. Shi, X.Y. Ding, K.C. Pan, Z.H. Gao, J. Du, J. Qiu, J. Mater. Chem. A 10 (2022) 7705-7717.
DOI URL |
[3] |
X.H. Hong, D.D.L. Chung, Carbon 111 (2017) 529-537.
DOI URL |
[4] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Mi-cro Lett. 13 (2021) 91. |
[5] |
B. Liu, J.H. Li, L.F. Wang, J.H. Ren, Y.F. Xu, Compos. Pt. A-Appl. Sci. Manuf. 97 (2017) 141-150.
DOI URL |
[6] |
J.H. Luo, Y. Xu, W. Yao, C.F. Jiang, J.G. Xu, Compos. Sci. Technol. 117 (2015) 315-321.
DOI URL |
[7] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano-Micro Lett. 14 (2022) 51. |
[8] |
J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Carbon 183 (2021) 205-215.
DOI URL |
[9] |
L.Z. Wu, R.W. Shu, J.B. Zhang, X.T. Chen, J. Colloid Interface Sci. 608 (2022) 1212-1221.
DOI URL |
[10] |
T. Li, D.D. Zhi, Y. Chen, B. Li, Z.W. Zhou, F.B. Meng, Nano Res. 13 (2020) 477-484.
DOI URL |
[11] |
B. Zhao, Y. Li, Q.W. Zeng, B.B. Fan, L. Wang, R. Zhang, R.C. Che, J. Mater. Sci. Technol. 107 (2022) 100-110.
DOI URL |
[12] |
X.H. Hong, T. Peng, C.Y. Zhu, J.M. Wan, Y.Q. Li, J. Alloy. Compd. 882 (2021) 160756.
DOI URL |
[13] | X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Adv. Mater. 32 (2020) 2002112. |
[14] |
M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, J. Yuan, Mater. Sci. Eng. R 145 (2021) 100627.
DOI URL |
[15] |
C. Han, M. Zhang, W.Q. Cao, M.S. Cao, Carbon 171 (2021) 953-962.
DOI URL |
[16] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[17] |
L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang, H.B. Zhang, X.P. Zhou, C.T. Liu, C.Y. Shen, X.L. Xie, ACS Nano 15 (2021) 6622-6632.
DOI URL |
[18] |
Y.L. Zhang, Z.L. Ma, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 5601-5609.
DOI URL |
[19] |
T.T. Liu, M.Q. Cao, Y.S. Fang, Y.H. Zhu, M.S. Cao, J. Mater. Sci. Technol. 112 (2022) 329-344.
DOI URL |
[20] | X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
[21] |
Y.L. Zhang, J.W. Gu, Nano-Micro Lett. 14 (2022) 89.
DOI PMID |
[22] |
J.W. Chua, X.W. Li, T. Li, B.W. Chua, X. Yu, W. Zhai, J. Mater. Sci. Technol. 108 (2022) 196-207.
DOI |
[23] |
S.C. Pinto, N.H.C.S. Silva, R.J.B. Pinto, C.S.R. Freire, I. Duarte, R. Vicente, M. Vesenjak, P.A.A.P. Marques, Carbohyd. Polym. 238 (2020) 116197.
DOI URL |
[24] |
Z. Zhang, S. Yang, P.P. Zhang, J. Zhang, G.B. Chen, X.L. Feng, Nat. Commun. 10 (2019) 2920.
DOI PMID |
[25] |
B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, Z.Q. Lu, X.Y. Ding, Adv. Funct. Mater. 30 (2020) 2000186.
DOI URL |
[26] |
K. Liang, E.M. Spiesz, D.T. Schmieden, A.W. Xu, A.S. Meyer, M.E. Aubin-Tam, ACS Nano 14 (2020) 14731-14739.
DOI URL |
[27] |
J. Nasser, J.J. Lin, K. Steinke, H.A. Sodano, Compos. Sci. Technol. 174 (2019) 125-133.
DOI |
[28] |
S.A. Shah, D. Kulhanek, W.M. Sun, X.F. Zhao, S. Yu, D. Parviz, J.L. Lutkenhaus, M.J. Green, J. Colloid Interface Sci. 560 (2020) 581-588.
DOI URL |
[29] |
C.L. Bao, S.G. Bi, He Zhang, J.L. Zhao, P.F. Wang, C.Y. Yue, J.L. Yang, J. Mater. Chem. A 4 (2016) 9437-9446.
DOI URL |
[30] |
Y.B. Zou, Z.Y. Chen, Z.Y. Peng, C.Y. Yu, W.B. Zhong, Nanoscale 13 (2021) 16734-16747.
DOI URL |
[31] |
P.H. Xia, H. Li, Y.J. Wang, J.F. Wang, Appl. Surf. Sci. 545 (2021) 149004.
DOI URL |
[32] |
S. Chen, Y. Zheng, B. Zhang, Y.Y. Feng, J.X. Zhu, J.S. Xu, C. Zhang, W. Feng, T.X. Liu, ACS Appl. Mater. Interfaces 11 (2019) 1384-1393.
DOI URL |
[33] |
L.K. Zhang, Y. Chen, Q. Liu, W.T. Deng, Y.Q. Yue, F.B. Meng, J. Mater. Sci. Technol. 111 (2022) 57-65.
DOI URL |
[34] |
C.W. Li, M.C. Ding, B.Q. Zhang, X. Qiao, C.Y. Liu, Nanoscale 10 (2018) 18291-18299.
DOI URL |
[35] |
J.L. Xiao, W.Y. Lv, Y.H. Song, Q. Zheng, Chem. Eng. J. 338 (2018) 202-210.
DOI URL |
[36] |
D.D. Zhi, T. Li, Z.H. Qi, J.Z. Li, Y.R. Tian, W.T. Deng, F.B. Meng, Chem. Eng. J. 433 (2022) 134496.
DOI URL |
[37] |
Q.S. Lia, S.T. Li, Q.C. Liu, X.F. Liu, J.L. Shui, X.K. Kong, Carbon 183 (2021) 100-107.
DOI URL |
[38] |
J.Z. Li, Z.K. Xu, T. Li, D.D. Zhi, Y. Chen, Q.H. Lu, J.J. Wang, Q. Liu, F.B. Meng, Compos. Pt. B-Eng. 231 (2022) 109565.
DOI URL |
[39] |
Z. Zhang, J.W. Tan, W.H. Gu, H.Q. Zhao, J. Zheng, B.S. Zhang, G.B. Ji, Chem. Eng. J. 395 (2020) 125190.
DOI URL |
[40] |
F. Sun, Q.G. Liu, Y.F. Xu, X.P. Xin, Z.Z. Wang, X.F. Song, X.F. Zhao, J.J. Xu, J. Liu, L.P. Zhao, P. Zhang, L. Gao, Chem. Eng. J. 415 (2021) 128976.
DOI URL |
[41] |
J.X. Ma, W.H. Li, Y.C. Fan, J.Y. Yang, Q.K. Yang, J.C. Wang, W. Luo, W.W. Zhou, N. Nomura, L.J. Wang, W. Jiang, ACS Appl. Mater. Interfaces 11 (2019) 46386-46396.
DOI URL |
[42] |
J.P. Chen, H. Jia, Z. Liu, Q.Q. Kong, Z.H. Hou, L.J. Xie, G.H. Sun, S.C. Zhang, C.M. Chen, Carbon 164 (2020) 59-68.
DOI URL |
[43] |
D.W. Xu, S. Yang, P. Chen, Q. Yu, X.H. Xiong, J. Wang, Carbon 146 (2019) 301-312.
DOI URL |
[44] |
B. Lu, L.X. Lv, H.S. Yang, J. Gao, T. Xu, G.Q. Sun, X.T. Jin, C.X. Shao, L.T. Qu, J. Yang, J. Mater. Chem. A 7 (2019) 11423.
DOI URL |
[45] |
L.T. Cao, X. Yu, X. Yin, Y. Si, J.Y. Yu, B. Ding, J. Colloid Interface Sci. 597 (2021) 21-28.
DOI URL |
[46] |
J.H. Oh, J. Kim, H. Lee, Y. Kang, I.K. Oh, ACS Appl. Mater. Interfaces 10 (2018) 22650-22660.
DOI URL |
[47] |
Y. Wu, X.Y. Sun, W. Wu, X. Liu, X.Y. Lin, X. Shen, Z.Y. Wang, R.K.Y. Li, Z.Y. Yang, K.T. Lau, J.K. Kim, Compos. Part A Appl. Sci. Manuf. 102 (2017) 391-399.
DOI URL |
[48] | Q.Q. Zhang, M.L. Hao, X. Xu, G.P. Xiong, H. Li, T.S. Fisher, ACS Appl. Mater. In-terfaces 9 (2017) 14232-14241. |
[49] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[1] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
[2] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[3] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[4] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
[5] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
[6] | Jun Wei Chua, Xinwei Li, Tao Li, Beng Wah Chua, Xiang Yu, Wei Zhai. Customisable sound absorption properties of functionally graded metallic foams [J]. J. Mater. Sci. Technol., 2022, 108(0): 196-207. |
[7] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[8] | Long Xia, Yuming Feng, Biao Zhao. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough [J]. J. Mater. Sci. Technol., 2022, 130(0): 136-156. |
[9] | Jinbo Cheng, Bowen Liu, Yanqin Wang, Haibo Zhao, Yuzhong Wang. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption [J]. J. Mater. Sci. Technol., 2022, 130(0): 157-165. |
[10] | Mengxiao Sun, Derong Wang, Ziming Xiong, Zhongwei Zhang, Long Qin, Chaochan Chen, Fan Wu, Panbo Liu. Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption [J]. J. Mater. Sci. Technol., 2022, 130(0): 176-183. |
[11] | Yupeng Shi, Dan Li, Haoxu Si, Zhiyang Jiang, Mengyuan Li, Chunhong Gong. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum [J]. J. Mater. Sci. Technol., 2022, 130(0): 249-255. |
[12] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[13] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[14] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[15] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||