J. Mater. Sci. Technol. ›› 2023, Vol. 133: 111-122.DOI: 10.1016/j.jmst.2022.04.057
• Research article • Previous Articles Next Articles
Shenglan Yanga, Jing Zhonga, Jiong Wanga, Jianbao Gaoa, Qian Lib, Lijun Zhanga,c,*()
Received:
2022-03-03
Revised:
2022-04-23
Accepted:
2022-04-24
Published:
2022-07-02
Online:
2022-07-02
Contact:
Lijun Zhang
About author:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China. E-mail address: lijun.zhang@csu.edu.cn (L. Zhang).Shenglan Yang, Jing Zhong, Jiong Wang, Jianbao Gao, Qian Li, Lijun Zhang. A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation[J]. J. Mater. Sci. Technol., 2023, 133: 111-122.
Fig. 1. (a) Schematic for the concept of atomic pairs in both ternary A-B-C and quaternary A-B-C-D systems. Schematics for the cross-sectional view and end-members in α/β interface of (b) ternary A-B-C system and (c) quaternary A-B-C-D system.
Parameters (mJ m-2) | Expression (T in K) |
---|---|
σNi−Al | -536.62 + 8.99910 · T + 6.07970 × 10-4 · T 2 - 1.28251 · T · ln(T) |
σNi−Cr | 89.34 + 0.25978 · T - 6.34033 × 10-5 · T 2 |
σAl−Cr | -1972.65 + 25.13782 · T + 1.56533 × 10-3 · T 2 - 3.55575 · T · ln(T) |
-740.10 + 0.41001 · T | |
1293.93 - 0.88470 · T | |
-175.24 | |
-747.61 + 0.50526 · T | |
-87.32 | |
-1098.13 | |
2014.65 |
Table 1. Model parameters for the γ/liquid interfacial energies of Ni-Al, Ni-Cr, Al-Cr, and Ni-Al-Cr systems.
Parameters (mJ m-2) | Expression (T in K) |
---|---|
σNi−Al | -536.62 + 8.99910 · T + 6.07970 × 10-4 · T 2 - 1.28251 · T · ln(T) |
σNi−Cr | 89.34 + 0.25978 · T - 6.34033 × 10-5 · T 2 |
σAl−Cr | -1972.65 + 25.13782 · T + 1.56533 × 10-3 · T 2 - 3.55575 · T · ln(T) |
-740.10 + 0.41001 · T | |
1293.93 - 0.88470 · T | |
-175.24 | |
-747.61 + 0.50526 · T | |
-87.32 | |
-1098.13 | |
2014.65 |
Fig. 3. Model-predicted temperature-dependent γ/liquid interfacial energies for the (a) Ni-Al, (b) Ni-Cr, and (c) Al-Cr systems (denoted by solid lines), compared with the original data by OpenIEC (denoted by hollow symbols).
Fig. 4. Model-predicted temperature- and composition-dependent γ/liquid interfacial energies for the Ni-Al-Cr system (denoted by solid lines), compared with the original data by OpenIEC (denoted by hollow symbols). The mole fractions of Cr are fixed as (a) 0.05, (b) 0.08, (c) 0.11, (d) 0.14, (e) 0.17, and (f) 0.20, respectively.
Parameters (mJ m-2) | Expression (T in K) |
---|---|
σNi−Al=σAl−Cr | 138.04 - 0.11345 · T + 2.02702 × 10-5 · T 2 |
σNi−Cr | 147.92 - 0.15161 · T + 3.90215 × 10-5 · T 2 |
-9144.57 + 6.60663 · T | |
21,512.46 - 15.99501 · T | |
-12,244.89 + 9.26806 · T | |
-1759.62 + 1.33749 · T | |
18,351.18 - 13.49255 · T |
Table 2. Model parameters for the γ/γ' coherent interfacial energies of Ni-Al, Ni-Cr, Al-Cr, and Ni-Al-Cr systems.
Parameters (mJ m-2) | Expression (T in K) |
---|---|
σNi−Al=σAl−Cr | 138.04 - 0.11345 · T + 2.02702 × 10-5 · T 2 |
σNi−Cr | 147.92 - 0.15161 · T + 3.90215 × 10-5 · T 2 |
-9144.57 + 6.60663 · T | |
21,512.46 - 15.99501 · T | |
-12,244.89 + 9.26806 · T | |
-1759.62 + 1.33749 · T | |
18,351.18 - 13.49255 · T |
Fig. 5. Model-predicted temperature-dependent γ/γ' interfacial energies for the (a) Ni-Al, (b) Ni-Cr, and (c) Al-Cr systems (denoted by solid lines), compared with the original data of Ni-Al alloys by OpenIEC (denoted by hollow squares).
Fig. 6. Model-predicted temperature- and composition-dependent γ/γ' interfacial energies for the Ni-Al-Cr system (denoted by solid lines), compared with the original data by OpenIEC (denoted by hollow symbols). The mole fractions of Al are fixed as (a) 0.06, (b) 0.08, (c) 0.10, (d) 0.12, (e) 0.14, and (f) 0.16, respectively.
Fig. 7. Cutaway drawings for Al composition field of phase-field simulated γ dendrite in the Ni–Al alloy during the isothermal solidification with the constant (a1–a3, c1–c3, and e1–e3) and temperature-dependent (b1–b3, d1–d3, and f1–f3) γ/liquid interfacial energies: (a1–a3 and b1–b3) 1570 K, (c1–c3 and d1–d3) 1573 K, and (e1–e3 and f1–f3) 1576 K. Dendrite contours are plotted at the position of $ \phi =0.3 $. σ0 denotes the constant γ/liquid interfacial energy from literature, while σ(T) denotes the temperature-dependent γ/liquid interfacial energy of the Ni–Al alloy predicted in this work.
Fig. 8. Evolution of (a) growth velocities and (b) partition coefficients of Al at the dendrite tips of phase-field simulated primary dendrite in the Ni-Al alloy at different temperatures. The symbols with solid lines denote the phase-field simulated results with the temperature-dependent γ/liquid interfacial energies, while the symbols with dashed lines represent those with the constant interfacial energy. The dash-dotted lines signify the equilibrium partition coefficients of Al in Ni-Al alloys at different temperatures.
Fig. 9. Cutaway drawings for Al (a-f) and Cr (g-l) composition fields of phase-field simulated γ dendrites of different Ni-Al-Cr alloys during isothermal solidification at 1473 K with the constant (a1-a3, c1-c3, e1-e3, g1-g3, i1-i3, and k1-k3) and temperature- and composition-dependent (b1-b3, d1-d3, f1-f3, h1-h3, j1-j3, and l1-l3) γ/liquid interfacial energies. a1-a3, b1-b3, g1-g3, and h1-h3: Ni-28 at.% Al-13 at.% Cr; c1-c3, d1-d3, i1-i3, and j1-j3: Ni-28 at.% Al-15 at.% Cr; and e1-e3, f1-f3, k1-k3, and l1-l3: Ni-28 at.% Al-17 at.% Cr. Dendrite contours are plotted at the position of ?=0.3. σ0 denotes the constant γ/liquid interfacial energy from literature, while σ(T,x) denotes the temperature- and composition-dependent γ/liquid interfacial energy of the Ni-Al-Cr alloys predicted in this work.
Fig. 10. Evolution of (a) growth velocities, (b) partition coefficients of Al, and (c) partition coefficients of Cr at the tips of phase-field simulated primary dendrites in the Ni-Al-Cr alloys during the isothermal solidification at 1473 K. The symbols with solid lines represent the simulated results with the temperature- and composition-dependent γ/liquid interfacial energies of Ni-Al-Cr alloys, while those with dashed lines represent the simulated results with the constant interfacial energy. The dash-dotted lines signify the equilibrium partition coefficients of Al and Cr in different Ni-Al-Cr alloys at 1473 K.
[1] |
L.Q. Chen, Ann. Rev. Mater. Res. 32 (2002) 113-140.
DOI URL |
[2] |
W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Ann. Rev. Mater. Res. 32 (2002) 163-194.
DOI URL |
[3] |
I. Steinbach, Model. Simul. Mater. Sci. Eng. 17 (2009) 073001.
DOI URL |
[4] | N. Provatas, K. Elder, Phase-Field Methods in Materials Science and Engineer- ing, Wiley-VCH, Weinheim, 2010. |
[5] |
D. Tourret, H. Liu, J. LLorca, Prog. Mater. Sci. 123 (2022) 100810.
DOI URL |
[6] |
J.B. Gao, A. Malchère, S.L. Yang, A. Campos, T. Luo, K. Quertite, P. Steyer, C. Gi- rardeaux, L.J. Zhang, D. Mangelinck, Acta Mater. 223 (2022) 117491.
DOI URL |
[7] | L.J. Zhang, Y. Du, J. Phase Equilib. Diffus. 37 (2016) 259-260. |
[8] |
A. Karma, Phys. Rev. Lett. 87 (2001) 115701.
DOI URL |
[9] |
L.J. Zhang, J. Wang, Y. Du, R.X. Hu, P. Nash, X.G. Lu, C. Jiang, Acta Mater. 57 (2009) 5324-5341.
DOI URL |
[10] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[11] |
Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy. 9 (2021) 1922-1941.
DOI URL |
[12] |
W. Yi, G.C. Liu, Z. Lu, J.B. Gao, L.J. Zhang, J. Mater. Sci. Technol. 112 (2022) 277-290.
DOI URL |
[13] |
J.O. Andersson, J. ˚Agren, J. Appl. Phys. 72 (1992) 1350-1355.
DOI URL |
[14] |
J. Zhong, L.J. Zhang, X.K. Wu, L. Chen, C.M. Deng, J. Mater. Sci. Technol. 48 (2020) 163-174.
DOI |
[15] | J. Zhong, L. Chen, L. Zhang, npj Comput. Mater. 7 (2021) 1-13. |
[16] | Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48. |
[17] |
X.G. Lu, M. Selleby, B. Sundman, Acta Mater. 53 (2005) 2259-2272.
DOI URL |
[18] |
Z.K. Liu, H. Zhang, S. Ganeshan, Y. Wang, S.N. Mathaudhu, Scr. Mater. 63 (2010) 686-691.
DOI URL |
[19] | F. Zhang, Y. Du, S.H. Liu, W.Q. Jie, Calphad 49 (2015) 79-86. |
[20] | A.E. Gheribi, P. Chartrand, Calphad 39 (2012) 70-79. |
[21] | Y.J. Shang, S.L. Yang, L.J. Zhang, Materialia 8 (2019) 10 050 0. |
[22] |
I. Steinbach, B. Böttger, J. Eiken, N. Warnken, S. Fries, J. Phase Equilib. Diffus. 28 (2007) 101-106.
DOI URL |
[23] |
S.G. Fries, B. Boettger, J. Eiken, I. Steinbach, Int. J. Mater. Res. 100 (2009) 128-134.
DOI URL |
[24] |
L.J. Zhang, M. Stratmann, Y. Du, B. Sundman, I. Steinbach, Acta Mater. 88 (2015) 156-169.
DOI URL |
[25] |
M. Wei, Y. Tang, L.J. Zhang, W.H. Sun, Y. Du, Metall. Mater. Trans. A 46 (2015) 3182-3191.
DOI URL |
[26] | L.M. Brown, R.K. Ham, Strengthening Methods in Crystals, Elsevier, Amsterdam, 1971. |
[27] | J.W. Christian, The Theory of Transformations in Metals and Alloys, Elsevier, Amsterdam, 2002. |
[28] |
X. Kang, L.J. Zhang, S. Sobolev, Sci. Rep. 8 (2018) 5348.
DOI PMID |
[29] | I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. |
[30] | C. Wagner, Z. Elektrochem. 65 (1961) 581-591. |
[31] |
A.J. Ardell, R.B. Nicholson, Acta Metall. 14 (1966) 1295-1309.
DOI URL |
[32] |
N. Mara ¸s li, J.D. Hunt, Acta Mater. 44 (1996) 1085-1096.
DOI URL |
[33] |
T. Philippe, P.W. Voorhees, Acta Mater. 61 (2013) 4237-4244.
DOI URL |
[34] |
Y. Altıntas, S. Aksöz, K. Ke ¸s lio ˘glu, N. Mara ¸s lı, J. Alloy. Compd. 649 (2015) 453-460.
DOI URL |
[35] |
A.J. Ardell, Metall. Mater. Trans. A 52 (2021) 5182-5199.
DOI URL |
[36] |
J.J. Hoyt, M. Asta, A. Karma, Phys. Rev. Lett. 86 (2001) 5530.
PMID |
[37] |
Y. Mishin, Acta Mater. 52 (2004) 1451-1467.
DOI URL |
[38] |
Z. Mao, C. Booth-Morrison, E. Plotnikov, D.N. Seidman, J. Mater. Sci. 47 (2012) 7653-7659.
DOI URL |
[39] |
X. Li, N. Saunders, A. Miodownik, Metall. Mater. Trans. A 33 (2002) 3367-3373.
DOI URL |
[40] |
B. Sonderegger, E. Kozeschnik, Metall. Mater. Trans. A 41 (2010) 3262-3269.
DOI URL |
[41] |
S.L. Yang, J. Zhong, J. Wang, L.J. Zhang, G. Kaptay, J. Mater. Sci. 54 (2019) 10297-10311.
DOI URL |
[42] |
G. Kaptay, J. Mater. Sci. 53 (2018) 3767-3784.
DOI URL |
[43] | G. Kaptay, Acta Mater. 60 (2012) 6 804-6 813. |
[44] |
I. Steinbach, L. Zhang, M. Plapp, Acta Mater. 60 (2012) 2689-2701.
DOI URL |
[45] |
L.J. Zhang, I. Steinbach, Acta Mater. 60 (2012) 2702-2710.
DOI URL |
[46] |
L.J. Zhang, E.V. Danilova, I. Steinbach, D. Medvedev, P.K. Galenko, Acta Mater. 61 (2013) 4155-4168.
DOI URL |
[47] | A.T. Dinsdale, CALPHAD 15 (1991) 317-425. |
[48] | I. Steinbach, F. Pezzolla, Phys. D 134 (1999) 385-393. |
[49] |
J. Bragard, A. Karma, Y.H. Lee, M. Plapp, Interface Sci. 10 (2002) 121-136.
DOI URL |
[50] |
D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, D.J. Srolovitz, Phys. Rev. B 73 (2006) 024116.
DOI URL |
[51] | E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for Python, 2001, . |
[52] |
Q. Chen, N. Ma, K.S. Wu, Y.Z. Wang, Scr. Mater. 50 (2004) 471-476.
DOI URL |
[53] |
D.J. Cao, N. Ta, L.J. Zhang, Prog. Nat. Sci. Mater. Int. 27 (2017) 678-686.
DOI URL |
[54] |
C. Yang, Q.Y. Xu, X.L. Su, B.C. Liu, Acta Mater. 175 (2019) 286-296.
DOI URL |
[55] | Y. Tang, Thermodynamics, Diffusion and Quantitative Simulation of Microstruc- ture in Al-Mg-Si Alloys During the Solidification Process, Central South Univer- sity, 2015 Ph.D Thesis. (in Chinese) |
[56] | W. Huang, Y.A. Chang, Intermetallics 7 (1999) 863-874. |
[57] | J. Zhong, K. Wang, L.J. Zhang, Defect Diffus. Forum 383 (2018) 66-73. |
[58] |
L.J. Zhang, Y. Du, Q. Chen, I. Steinbach, B.Y. Huang, Int. J. Mater. Res. 101 (2010) 1461-1475.
DOI URL |
[59] | J. Chen, J.K. Xiao, C.Y. Wang, L.J. Zhang, Vacuum 189 (2021) 110238. |
[60] |
W.M. Chen, L.J. Zhang, Y. Du, B.Y. Huang, Philos. Mag. 94 (2014) 1552-1577.
DOI URL |
[61] |
K. Higuchi, H.J. Fecht, R.K. Wunderlich, Adv. Eng. Mater. 9 (2007) 349-354.
DOI URL |
[62] |
C. Yang, H.X. Xia, Q.Y. Xu, B.C. Liu, Comput. Mater. Sci. 196 (2021) 110550.
DOI URL |
[1] | Yunwei Pan, Anping Dong, Yang Zhou, Dafan Du, Donghong Wang, Guoliang Zhu, Baode Sun. Effects of V addition on the mechanical properties at elevated temperatures in a γ"-strengthened NiCoCr-based multi-component alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 290-300. |
[2] | Jia Chen, Min Guo, Min Yang, Lin Liu, Jun Zhang. Double minimum creep processing and mechanism for γʹ strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 123-129. |
[3] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[4] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[5] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[6] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[7] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[8] | Tobias Mittnacht, P.G. Kubendran Amos, Daniel Schneider, Britta Nestler. Morphological stability of three-dimensional cementite rods in polycrystalline system: A phase-field analysis [J]. J. Mater. Sci. Technol., 2021, 77(0): 252-268. |
[9] | Jia Sun, Min Qi, Jinhu Zhang, Xuexiong Li, Hao Wang, Yingjie Ma, Dongsheng Xu, Jiafeng Lei, Rui Yang. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 98-108. |
[10] | Kai Xu, Keke Chang, Miao Yu, Dapeng Zhou, Yong Du, Liping Wang. Design of novel NiSiAlY alloys in marine salt-spray environment: Part II. Al-Ni-Si-Y thermodynamic dataset [J]. J. Mater. Sci. Technol., 2021, 89(0): 186-198. |
[11] | Mehran Golizadeh, Francisca Mendez Martin, Stefan Wurster, Johann P. Mogeritsch, Abdellah Kharicha, Szilard Kolozsvári, Christian Mitterer, Robert Franz. Rapid solidification and metastable phase formation during surface modifications of composite Al-Cr cathodes exposed to cathodic arc plasma [J]. J. Mater. Sci. Technol., 2021, 94(0): 147-163. |
[12] | Kai Xu, Keke Chang, Yong Du, Liping Wang. Design of novel NiSiAlY alloys in marine salt-spray environment: Part I. Al-Si-Y and Ni-Si-Y subsystems [J]. J. Mater. Sci. Technol., 2021, 88(0): 66-78. |
[13] | Shiyi Wen, Yuling Liu, George Kaptay, Yong Du. A new model to describe composition and temperature dependence of thermal conductivity for solution phases in binary alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 72-82. |
[14] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[15] | Qun Luo, Cong Zhai, Dongke Sun, Wei Chen, Qian Li. Interpolation and extrapolation with the CALPHAD method [J]. J. Mater. Sci. Technol., 2019, 35(9): 2115-2120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||