J. Mater. Sci. Technol. ›› 2022, Vol. 129: 196-205.DOI: 10.1016/j.jmst.2022.04.045
• Research Article • Previous Articles Next Articles
Yi Yanga, Jun-Ru Taoa, Dian Yanga, Qian-Ming Hea, Xu-Dong Chenb, Ming Wanga,*()
Received:
2022-04-01
Revised:
2022-04-27
Accepted:
2022-04-30
Published:
2022-05-29
Online:
2022-05-29
Contact:
Ming Wang
About author:
* E-mail addresses: mwang@swu.edu.cn (M. Wang).Yi Yang, Jun-Ru Tao, Dian Yang, Qian-Ming He, Xu-Dong Chen, Ming Wang. Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-π interaction: Towards microwave shielding enhancement[J]. J. Mater. Sci. Technol., 2022, 129: 196-205.
Fig. 2. (a) XRD curves, (b) Raman spectra of graphite, graphite treated by ultrasonic, and graphite treated by ultrasonic and cation-π interaction. (c) Schematic illustration of delamination effect of cation-π interaction for graphite. SEM images of (d, g) graphite, (e, h) graphite treated by ultrasonic, and (f, i) graphite treated by ultrasonic and cation-π interaction. TEM images of (j, k) graphite treated by ultrasonic and (l, m) graphite treated by ultrasonic and cation-π interaction.
Fig. 3. Digital photos of the surface for the graphite/starch coating absent (a-d) or in the presence of cation-π interaction (e-h) with different content of graphite: 1 (a, e), 5 (b, f), 10 (c, g), and 50 wt.% (d, h). (i) Digital photos of the graphite/starch aqueous slurry with the weight ratio of 1:1 for graphite/starch. The scale bar is 1 mm for all images.
Fig. 4. SEM images of cross-section for the graphite/starch coating layer absent (a-d) or in the presence of cation-π interaction (e-h) with different content of graphite: 1 (a, e), 5 (b, f), 10 (c, g), and 50 wt.% (d, h). The scale bar is 10 μm for all images.
Fig. 5. (a-c) SEM images of graphite/starch coating on paper, (d) effect of coating thickness on EM SET of the paperboard with one-side coating and the paperboard thickness of 1.30 mm, (e) effect of coating thickness on EM SET of the paperboard with two-side coatings and the paperboard thickness of 1.30 mm, (f) effect of paperboard thickness on EM SET of the paperboard with two-side coatings, (g) Salisbury screen effect of the paperboard samples with two-side coatings. The content of graphite and graphene sheets is 50 wt.% in the coatings.
Fig. 6. (a, d) Out-of-plane SEM images of the graphite/starch coatings with 50 wt.% graphite, (b, e) out-of-plane and (c, f) in-plane SEM images of the graphite/starch composites with 50 wt.% graphite, (g) comparison of EM SET for graphite/starch coatings and composites with or w/o cation-π interaction with 50 wt.% graphite, (h) effect of graphite content on EM SET of the graphite/starch composites with cation-π interaction, (i) effect of thickness on EM SET of the graphite/starch composites with cation-π interaction.
Fig. 7. (a) Electrical conductivity and (d) A, R, T coefficients at 12.4 GHz of the composites and coatings with or w/o cation-π interaction containing 50 wt.% graphite. (b) Electrical conductivity and (e) A, R, T coefficients at 12.4 GHz of the composites with cation-π interaction and different graphite content. (c) Electrical conductivity and (f) A, R, T coefficients at 12.4 GHz of the composites with cation-π interaction and different thicknesses.
Fig. 8. EM shielding mechanism of (a) the graphite/starch coatings and (b) the composites. (c) Comparison of EM SET for the coatings and composites with the reported biodegradable polymer composites [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70]. (d-h) One application for the EM shielding coating: (d) a coated wood box for shielding, (e) connecting WiFi and (f) giving a call without shielding, (g) a shielding box between a radiated phone and a detector, and (h) a radiated phone in the shielding box.
[1] |
Y. Han, K. Ruan, J. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[2] |
M. Roosli, Environ. Res. 107 (2008) 277-287.
DOI URL |
[3] |
Y. Zhang, K. Ruan, J. Gu, Small 17 (2021) 2101951.
DOI URL |
[4] |
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, Chem. Eng. J. 359 (2019) 1265-1302.
DOI URL |
[5] | B. Sarkar, X. Li, E. Quenneville, L.P. Carignan, K. Wu, F. Cicoira, J. Mater. Chem. C 9 (2021) 16558-16565. |
[6] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
[7] | Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu, Y. Hu, S. Rong, C.P. Wong, Nano-Micro Lett. 14 (2022) 1-15. |
[8] | X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Composites, Part A 128 (2020) 105670. |
[9] |
L. Zhang, Y. Chen, Q. Liu, W. Deng, Y. Yue, F. Meng, J. Mater. Sci. Technol. 111 (2022) 57-65.
DOI URL |
[10] | D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, A. Long, Composites, Part B 173 (2019) 106906. |
[11] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem., Int. Ed. 61 (2022) e202200705. |
[12] |
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 1 (2021) 413-431.
DOI URL |
[13] | H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Macromol. Mater. Eng. 306 (2021) 210 0 032. |
[14] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[15] |
S. Das, S. Sharma, T. Yokozeki, S. Dhakate, Compos. Struct. 261 (2021) 113293.
DOI URL |
[16] |
M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen, S.Y. Guo, Carbon 177 (2021) 377-402.
DOI URL |
[17] | X.H. Tang, Y. Tang, Y. Wang, Y.X. Weng, M. Wang, Composites, Part A 139 (2020) 106116. |
[18] | H. Wang, K. Zheng, X. Zhang, T. Du, C. Xiao, X. Ding, C. Bao, L. Chen, X. Tian, Composites, Part A 90 (2016) 606-613. |
[19] |
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25 (2015) 559-566.
DOI URL |
[20] | Q.M. He, J. R. Tao. Y. Yang, D. Yang, K. Zhang, B. Fei, M. Wang, Composites, Part A 156 (2022) 106901. |
[21] |
Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen, X. Liu, Adv. Compos. Hybrid Mater. 4 (2021) 274-285.
DOI URL |
[22] |
Y. Li, B. Xue, S. Yang, Z. Cheng, L. Xie, Q. Zheng, Chem. Eng. J. 410 (2021) 128356.
DOI URL |
[23] | S. Zhu, Q. Zhou, M. Wang, J. Dale, Z. Qiang, Y. Fan, M. Zhu, C. Ye, Composites, Part B 204 (2021) 108497. |
[24] |
T. Li, D. Zhi, Z. Guo, J. Li, Y. Chen, F. Meng, Green Chem. 24 (2022) 647-674.
DOI URL |
[25] |
Y. Zhang, J. Gu, Nano-Micro Lett. 14 (2022) 89.
DOI PMID |
[26] | J. Kim, G. Kim, S. Kim, Y.S. Lee, Y. Kim, J. Lee, J. Kim, Y. Jung, J. Kwon, H. Han, Composites, Part B 221 (2021) 109010. |
[27] |
N.A. Aal, F. El-Tantawy, A. Al-Hajry, M. Bououdina, Polym. Compos. 29 (2008) 125-132.
DOI URL |
[28] |
H. Wang, H. Ren, C. Jing, J. Li, Q. Zhou, F. Meng, Compos. Sci. Technol. 204 (2021) 108630.
DOI URL |
[29] |
Y. Chen, J. Li, T. Li, L. Zhang, F. Meng, Carbon 180 (2021) 163-184.
DOI URL |
[30] |
Y.D. Shi, J. Li, Y.J. Tan, Y.F. Chen, M. Wang, Compos. Sci. Technol. 170 (2019) 70-76.
DOI URL |
[31] | J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Composites, Part A 140 (2021) 106188. |
[32] | T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Adv. Mater. 32 (2020) e1906769. |
[33] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.Man Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[34] |
Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J.Y. Lee, Y.X. Guo, J.S. Ho, P.Y. Chen, Adv. Funct. Mater. 30 (2019) 1907451.
DOI URL |
[35] |
Y.T. Liang, M.C. Hersam, J. Am. Chem. Soc. 132 (2010) 17661-17663.
DOI PMID |
[36] |
H. Guan, D.D.L. Chung, Carbon 157 (2020) 549-562.
DOI URL |
[37] |
V. Panwar, J.O. Park, S.H. Park, S. Kumar, R.M. Mehra, J. Appl. Polym. Sci. 115 (2010) 1306-1314.
DOI URL |
[38] | Y. Wang, S. Luo, K. Ren, S. Zhao, Z. Chen, W. Li, J. Guan, J. Mater. Chem. C 4 (2016) 2566-2578. |
[39] | N. Joseph, J. Varghese, M.T. Sebastian, Composites, Part B 123 (2017) 271-278. |
[40] |
B. Laycock, M. Nikoli ´ c, J.M. Colwell, E. Gauthier, P. Halley, S. Bottle, G. George, Prog. Polym. Sci. 71 (2017) 144-189.
DOI URL |
[41] |
T.P. Haider, C. Völker, J. Kramm, K. Landfester, F.R. Wurm, Angew. Chem., Int. Ed. 58 (2019) 50-62.
DOI URL |
[42] |
F. Wu, M. Misra, A.K. Mohanty, Prog. Polym. Sci. 117 (2021) 101395.
DOI URL |
[43] |
G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang, H. Li, G. Zhao, C.B. Park, ACS Appl. Mater. Interfaces 10 (2018) 1195-1203.
DOI URL |
[44] | J. Li, W.J. Peng, Z.J. Fu, X.H. Tang, H. Wu, S. Guo, M. Wang, Composites, Part B 171 (2019) 204-213. |
[45] |
Y.F. Chen, Y.J. Tan, J. Li, Y.B. Hao, Y.D. Shi, M. Wang, Polym. Test. 65 (2018) 387-397.
DOI URL |
[46] | K. Zhang, H.O. Yu, Y.D. Shi, Y.F. Chen, J.B. Zeng, J. Guo, B. Wang, Z. Guo, M. Wang, J. Mater. Chem. C 5 (2017) 2807-2817. |
[47] |
X. Yu, L. Chen, Z. Jin, A. Jiao, J. Mater. Sci. 56 (2021) 11187-11208.
DOI URL |
[48] |
A. Fonseca-García, E.J. Jiménez-Regalado, R.Y. Aguirre-Loredo, Carbohydr. Polym. 251 (2021) 117009.
DOI URL |
[49] |
M. Pooresmaeil, H. Namazi, Carbohydr. Polym. 258 (2021) 117654.
DOI URL |
[50] |
A.D. Gupta, K.P. Rawat, V. Bhadauria, H. Singh, Carbohydr. Polym. 269 (2021) 117763.
DOI URL |
[51] | A .P. Abbott, A .D. Ballantyne J.P. Conde K.S. Ryder W.R. Wise, Green Chem. 14 (2012) 302. |
[52] |
J. Cheng, X. Luo, X. Yan, Z. Li, Y. Tang, H. Jiang, W. Zhu, Sci. China Ser. B: Chem. 51 (2008) 709-717.
DOI URL |
[53] |
S. Yamada, Chem. Rev. 118 (2018) 11353-11432.
DOI URL |
[54] | G. Zhao, H. Zhu, Adv. Mater. 32 (2020) e1905756. |
[55] |
H. Lu, Z. Xia, Q. Mi, J. Zhang, X. Zheng, Z. He, J. Wu, J. Zhang, Ind. Eng. Chem. Res. 61 (2022) 1773-1785.
DOI URL |
[56] | Y. Jiang, X. Ru, W. Che, Z. Jiang, H. Chen, J. Hou, Y. Yu, Composites, Part B 229 (2022) 109460. |
[57] |
M. Parit, H. Du, X. Zhang, C. Prather, M. Adams, Z. Jiang, Carbohydr. Polym. 240 (2020) 116304.
DOI URL |
[58] | H. Lu, Z. Xia, X. Zheng, Q. Mi, J. Zhang, Y. Zhou, C. Yin, J. Zhang, Compos. Com- mun. 26 (2021) 100786. |
[59] |
J. Chen, Z. Zhu, H. Zhang, S. Tian, S. Fu, Mater. Des. 204 (2021) 109695.
DOI URL |
[60] |
K. Zhang, X. Gu, Q. Dai, B. Yuan, Y. Yan, M. Guo, Vacuum 170 (2019) 108990.
DOI URL |
[61] | J. Luo, D. Yin, K. Yu, H. Zhou, B. Wen, X. Wang, ChemPhysChem 23 (4) (2022) e202100778. |
[62] |
S. Frackowiak, J. Ludwiczak, K. Leluk, K. Orzechowski, M. Kozlowski, Mater. Des. 65 (2015) 749-756.
DOI URL |
[63] |
T. Kuang, L. Chang, F. Chen, T. Sheng, D. Fu, X. Peng, Carbon 105 (2016) 305-313.
DOI URL |
[64] |
S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Mater. Des. 95 (2016) 119-126.
DOI URL |
[65] |
S. Kashi, E.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Mater. Des. 109 (2016) 68-78.
DOI URL |
[66] |
P. Cataldi, P. Steiner, T. Raine, K. Lin, C. Kocabas, R.J. Young, M. Bissett, I.A. Kin- loch, D.G. Papageorgiou, ACS Appl. Polym. Mater. 2 (2020) 3525-3534.
DOI URL |
[67] |
C. Xu, J. Liu, X. Zhu, Y. Zhu, X. Xiong, X. Cheng, J. Mater, J. Mater. Cycles Waste Manage. 17 (2014) 391-398.
DOI URL |
[68] |
Y. Zhang, J. Yu, J. Lu, C. Zhu, D. Qi, J. Alloy. Compd. 870 (2021) 159442.
DOI URL |
[69] | K. Zhang, G.H. Li, L.M. Feng, N. Wang, K.Sun J.Guo, K.X. Yu, J.B. Zeng, T. Li, Z. Guo, M. Wang, J. Mater. Chem. C 5 (2017) 9359-9369. |
[70] | Y. Chen, Y. Liu, Y. Li, H. Qi, ACS Appl. Mater. Interfaces 13 (2021) 30 020-30 029. |
[1] | Xianghong Chen, Haiying Lu, Yu Lei, Jiakui Zhang, Feng Xiao, Rui Wang, Peiran Xie, Jiantie Xu. Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability [J]. J. Mater. Sci. Technol., 2022, 107(0): 165-171. |
[2] | Xiao-Tong Wang, Yang Yang, Jin-Zhi Guo, Zhen-Yi Gu, Edison Huixiang Ang, Zhong-Hui Sun, Wen-Hao Li, Hao-Jie Liang, Xing-Long Wu. An advanced cathode composite for co-utilization of cations and anions in lithium batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 72-79. |
[3] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[4] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[5] | Jiali Chen, Da Yi, Xichen Jia, Guoqing Wang, Zhouping Sun, Lihua Zhang, Yinfeng Liu, Bin Shen, Wenge Zheng. Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity [J]. J. Mater. Sci. Technol., 2022, 103(0): 98-104. |
[6] | Jijun Zhang, Zexuan Wang, Jiawei Li, Yaqiang Dong, Aina He, Guoguo Tan, Qikui Man, Bin Shen, Junqiang Wang, Weixing Xia, Jun Shen, Xin-min Wang. Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding [J]. J. Mater. Sci. Technol., 2022, 96(0): 11-20. |
[7] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[8] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[9] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[10] | Chen Chen, Ying Huang, Zhuoyue Meng, Mengwei Lu, Zhipeng Xu, Panbo Liu, Tiehu Li. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J]. J. Mater. Sci. Technol., 2021, 76(0): 11-19. |
[11] | Hong Sun, Nan Deng, Jianqiang Li, Gang He, Jiangtao Li. Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders [J]. J. Mater. Sci. Technol., 2021, 61(0): 93-99. |
[12] | Kaili Yao, Xiaojun Tan, Bing Dai, Jie Bai, Qiaoyang Sun, Wenxin Cao, Jiwen Zhao, Lei Yang, Jiecai Han, Jiaqi Zhu. Au nanospheres modified boron-doped diamond microelectrode grown via hydrogen plasma etching solid doping source for dopamine detection [J]. J. Mater. Sci. Technol., 2020, 49(0): 42-46. |
[13] | Lizi Liu, Xianhua Chen, Jingfeng Wang, Liying Qiao, Shangyu Gao, Kai Song, Chaoyue Zhao, Xiaofang Liu, Di Zhao, Fusheng Pan. Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys [J]. J. Mater. Sci. Technol., 2019, 35(6): 1074-1080. |
[14] | M. Jalili, H. Ghanbari, S.Moemen Bellah, R. Malekfar. High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation [J]. J. Mater. Sci. Technol., 2019, 35(3): 292-299. |
[15] | Xiaoling Liu, Xiaowei Yin, Wenyan Duan, Fang Ye, Xinliang Li. Electromagnetic interference shielding properties of polymer derived SiC-Si3N4 composite ceramics [J]. J. Mater. Sci. Technol., 2019, 35(12): 2832-2839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||