J. Mater. Sci. Technol. ›› 2022, Vol. 123: 222-233.DOI: 10.1016/j.jmst.2022.01.023
• Research Article • Previous Articles Next Articles
Biru Liaoa,b, Xiaomin Liaob, Huiyuan Xieb, Yuanchu Qinb, Yi Zhua,c,*(), Yang Yub, Sen Houb, Yuanming Zhanga, Xiaoyun Fanb,**(
)
Received:
2021-10-09
Revised:
2022-01-10
Accepted:
2022-01-15
Published:
2022-10-01
Online:
2022-09-30
Contact:
Yi Zhu,Xiaoyun Fan
About author:
**E-mail addresses: xyfan@jnu.edu.cn (X. Fan).Biru Liao, Xiaomin Liao, Huiyuan Xie, Yuanchu Qin, Yi Zhu, Yang Yu, Sen Hou, Yuanming Zhang, Xiaoyun Fan. Built in electric field boosted photocatalytic performance in a ferroelectric layered material SrBi2Ta2O9 with oriented facets: Charge separation and mechanism insights[J]. J. Mater. Sci. Technol., 2022, 123: 222-233.
Fig. 2. Structural analysis of series of SBTO samples. (a) XRD patterns; (b) Raman spectra; (c) FTIR spectra; (d) crystal structure; (e) UV-vis DRS patterns with the enlarged view of SBTO 2-SBTO 7 in the inset figure; (f) band structures.
Fig. 3. SEM images of (a) SBTO 3 and (e) SBTO 4; (b) TEM image, (c) HRTEM image, and (d) SAED pattern of SBTO 3; (f) TEM image and (g) HRTEM image of SBTO 4; (h) schematic illustration of the crystal orientation of the SBTO nanocube.
Fig. 4. Photocatalytic degradation efficiency of (a) TC and (c) CIP; rate constants of (b) TC and (d) CIP on series of SBTO samples under visible light irradiation.
Photocatalysts | Antibiotics and concentration | Dosage(g/L) | Reaction conditions | Degradation rate (%) | Rate constants | Refs. |
---|---|---|---|---|---|---|
SBTO 3 | TC, 10 ppm | 0.1 | λ > 420 nm | 99, 20 min | 0.138 min-1 | This work |
BFTO/2% Ag/10% UCN | TC, 20 ppm | 0.1 | λ > 420 nm | 86, 20 min | 0.0465 min-1 | [ |
BON-S | TC, 10 ppm | 0.1 | UV- vis | 97.75, 25 min | / | [ |
0.4C-BMO | TC, 10 ppm | 0.04 | Visible light | 99.8, 120 min | 2.16032 h-1 | [ |
SBNCN-3 | TC, 10 ppm | 0.1 | λ > 420 nm | 76, 240 min | 0.0095 min-1 | [ |
Bi2NbO5F | TC, 30 ppm | 0.05 | UV-vis | 80.73, 120 min | 0.0227 min-1 | [ |
Na-Bi2MoO6 | TC, 10 ppm | 0.1 | Visible light | 98, 300 min | 0.42302 h-1 | [ |
SBTO 3 | CIP, 10 ppm | 0.1 | λ > 420 nm | 95, 60 min | 0.0454 min-1 | This work |
NCQDs/BOC | CIP, 10 ppm | 0.05 | Visible light | 91.9, 120 min | - | [ |
1.0Bi-Ta | CIP, 20 ppm | 0.04 | λ > 400 nm | 81.1, 150 min | 0.0105 min-1 | [ |
BCN-200/rGO | CIP, 10 ppm | 0.06 | UV-vis | 90, 110 min | 0.014 min-1 | [ |
PbBiO2Br-0.10 | CIP, 10 ppm | 0.03 | λ > 400 nm | 86.7, 150 min | 0.01381 min-1 | [ |
5wt% CNT/PbBiO2Br | CIP, 10 ppm | 0.03 | λ > 400 nm | 88, 150 min | 0.01652 min-1 | [ |
10%Bi2MoO6/CuBi2O4 | CIP, 10 ppm | 0.1 | Visible light | 90.2, 180 min | 0.01263 min-1 | [ |
Table 1. Photocatalytic performance in TC and CIP compared in different reported Aurivillius-type layered photocatalysts.
Photocatalysts | Antibiotics and concentration | Dosage(g/L) | Reaction conditions | Degradation rate (%) | Rate constants | Refs. |
---|---|---|---|---|---|---|
SBTO 3 | TC, 10 ppm | 0.1 | λ > 420 nm | 99, 20 min | 0.138 min-1 | This work |
BFTO/2% Ag/10% UCN | TC, 20 ppm | 0.1 | λ > 420 nm | 86, 20 min | 0.0465 min-1 | [ |
BON-S | TC, 10 ppm | 0.1 | UV- vis | 97.75, 25 min | / | [ |
0.4C-BMO | TC, 10 ppm | 0.04 | Visible light | 99.8, 120 min | 2.16032 h-1 | [ |
SBNCN-3 | TC, 10 ppm | 0.1 | λ > 420 nm | 76, 240 min | 0.0095 min-1 | [ |
Bi2NbO5F | TC, 30 ppm | 0.05 | UV-vis | 80.73, 120 min | 0.0227 min-1 | [ |
Na-Bi2MoO6 | TC, 10 ppm | 0.1 | Visible light | 98, 300 min | 0.42302 h-1 | [ |
SBTO 3 | CIP, 10 ppm | 0.1 | λ > 420 nm | 95, 60 min | 0.0454 min-1 | This work |
NCQDs/BOC | CIP, 10 ppm | 0.05 | Visible light | 91.9, 120 min | - | [ |
1.0Bi-Ta | CIP, 20 ppm | 0.04 | λ > 400 nm | 81.1, 150 min | 0.0105 min-1 | [ |
BCN-200/rGO | CIP, 10 ppm | 0.06 | UV-vis | 90, 110 min | 0.014 min-1 | [ |
PbBiO2Br-0.10 | CIP, 10 ppm | 0.03 | λ > 400 nm | 86.7, 150 min | 0.01381 min-1 | [ |
5wt% CNT/PbBiO2Br | CIP, 10 ppm | 0.03 | λ > 400 nm | 88, 150 min | 0.01652 min-1 | [ |
10%Bi2MoO6/CuBi2O4 | CIP, 10 ppm | 0.1 | Visible light | 90.2, 180 min | 0.01263 min-1 | [ |
Fig. 6. AFM, KPFM, and surface potential change for SBTO. (a1) Topographic image, surface potential (a2) in dark and (a3) under irradiation of SBTO 1; (a4) differential image obtained by subtracting panel from panel (a3); (a5) the surface potential distribution on the selected line for the sample; Corresponding SBTO 3 (b1-b5); SBTO 4 (c1-c5).
Material | ΔCPD (mV) | Degradation efficiency | Degradation rate constant (min-1) | |||
---|---|---|---|---|---|---|
TC(20 min) | CIP(60 min) | TC | CIP | |||
Amorphous | SBTO 1 | 0.6 | 21% | 2% | 7.64 × 10-3 | 3.29 × 10-4 |
Nanocube | SBTO 2 | - | 93% | 71% | 8.58 × 10-2 | 1.76 × 10-2 |
SBTO 3 | 146.1 | 99% | 96% | 1.38 × 10-1 | 4.54 × 10-2 | |
Nanoplate | SBTO 4 | 38.4 | 75% | 37% | 5.15 × 10-2 | 6.23 × 10-3 |
SBTO 5 | - | 86% | 51% | 6.55 × 10-2 | 9.28 × 10-3 | |
SBTO 6 | - | 57% | 55% | 3.03 × 10-2 | 1.22 × 10-2 | |
SBTO 7 | - | 57% | 49% | 2.57 × 10-2 | 9.53 × 10-3 |
Table 2. Summary of ΔCPD, degradation efficiency, and degradation rate constant in SrBi2Ta2O9 series samples.
Material | ΔCPD (mV) | Degradation efficiency | Degradation rate constant (min-1) | |||
---|---|---|---|---|---|---|
TC(20 min) | CIP(60 min) | TC | CIP | |||
Amorphous | SBTO 1 | 0.6 | 21% | 2% | 7.64 × 10-3 | 3.29 × 10-4 |
Nanocube | SBTO 2 | - | 93% | 71% | 8.58 × 10-2 | 1.76 × 10-2 |
SBTO 3 | 146.1 | 99% | 96% | 1.38 × 10-1 | 4.54 × 10-2 | |
Nanoplate | SBTO 4 | 38.4 | 75% | 37% | 5.15 × 10-2 | 6.23 × 10-3 |
SBTO 5 | - | 86% | 51% | 6.55 × 10-2 | 9.28 × 10-3 | |
SBTO 6 | - | 57% | 55% | 3.03 × 10-2 | 1.22 × 10-2 | |
SBTO 7 | - | 57% | 49% | 2.57 × 10-2 | 9.53 × 10-3 |
Fig. 7. ESR spin-trapping signals of DMPO-·OH and DMPO-·O2- for (a), (b) SBTO 3 and (c), (d) SBTO 4; photodegradation efficiency and rate constants of (e) and (f) TC, (g) and (h) CIP with different scavengers ((NH4)2C2O4→h+, TBA→·OH, p-BQ→·O2-) under visible light irradiation for SBTO 3.
Fig. 8. (a) and (b) Schematic diagrams for the possible photocatalytic mechanism over SrBi2Ta2O9 with ferroelectric polarization field under visible light irradiation; (c) top views of (001) and (115) surface terminations of SBTO.
Fig. 11. Fathead minnow LC50 of (a) TC and (c) CIP degradation intermediates and bioconcentration factor of (b) TC degradation intermediates and (d) CIP degradation intermediates.
[1] |
M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, J. Mater. Sci. Technol. 56 (2020) 133-142.
DOI URL |
[2] |
M.Y. Xu, J. Deng, A.H. Cai, X.Y. Ma, J. Li, Q.S. Li, X.Y. Li, Chem. Eng. J. 384 (2020) 123320.
DOI URL |
[3] |
Y.F. Zhang, Y. Li, H. Yu, K. Yu, H.B. Yu, J. Mater. Sci. Technol. 106 (2021) 139-146.
DOI URL |
[4] |
X.Y. Mi, Y. Li, X.M. Ning, J. Jia, H. Wang, Y. Xia, Y. Sun, S. Zhan, Chem. Eng. J. 358 (2019) 299-309.
DOI URL |
[5] |
Q.H. Shen, L.F. Wei, R. Bibi, K. Wang, D.D. Hao, J.C. Zhou, N.X. Li, J. Hazard. Mater. 413 (2021) 125376.
DOI URL |
[6] |
K. Liu, Z.F. Tong, Y. Muhammad, G.F. Huang, H.B. Zhang, Z.L. Wang, Y. Zhu, R. Tang, Chem. Eng. J. 388 (2020) 124374.
DOI URL |
[7] |
S.C. Tu, Y.H. Zhang, A.H. Reshak, S. Auluck, L.Q. Ye, X.P. Han, T.Y. Ma, H.W. Huang, Nano Energy 56 (2019) 840-850.
DOI URL |
[8] |
Q.Y. Zhao, Z.F. Liu, J.W. Li, W.G. Yan, J. Ya, X.F. Wu, Int. J. Hydrog. Energy 46 (2021) 36113-36123.
DOI URL |
[9] |
Z.G. Guo, Z.F. Liu, Dalton Trans. 50 (2021) 1983-1989.
DOI URL |
[10] |
S.C. Zhang, B. Zhang, D. Chen, Z.G. Guo, M.N. Ruan, Z.F. Liu, Nano Energy 79 (2021) 105485.
DOI URL |
[11] |
S.C. Zhang, D. Chen, Z.F. Liu, M.N. Ruan, Z.G. Guo, Appl. Catal. B Environ. 284 (2021) 119686.
DOI URL |
[12] |
G. Naresh, T.K. Mandal, ACS Sustain. Chem. Eng. 3 (2015) 2900-2908.
DOI URL |
[13] |
S.C. Tu, H.W. Huang, T.R. Zhang, Y.H. Zhang, Appl. Catal. B Environ. 219 (2017) 550-562.
DOI URL |
[14] |
K. Wang, Y. Li, G.K. Zhang, J. Li, X.Y. Wu, Appl. Catal. B Environ. 240 (2019) 39-49.
DOI URL |
[15] | Y. Liu, M.Y. Zhang, L. Li, X.T. Zhang, Appl. Catal. B Environ. 160 (2014) 757-766. |
[16] |
A. Nakada, D. Kato, R. Nelson, H. Takahira, M. Yabuuchi, M. Higashi, H. Suzuki, M. Kirsanova, N. Kakudou, C. Tassel, J. Am. Chem. Soc. 143 (2021) 2491-2499.
DOI URL |
[17] |
X.N. Li, Z. Ju, F. Li, Y. Huang, Y.M. Xie, Z.P. Fu, R. Knize, Y.L. Lu, J. Mater. Chem. A 2 (2014) 13366-13372.
DOI URL |
[18] |
L. Hao, H.W. Huang, Y.X. Guo, Y.H. Zhang, ACS Sustain. Chem. Eng. 6 (2018) 1848-1862.
DOI URL |
[19] | H.Q. He, J. Yin, Y.X. Li, Y. Zhang, H.S. Qiu, J.B. Xu, T. Xu, C.Y. Wang, Appl. Catal. B Environ. 156-157 (2014) 35-43. |
[20] |
H.W. Huang, Y. He, X.W. Li, M. Li, C. Zeng, F. Dong, X. Du, T.R. Zhang, Y.H. Zhang, J. Mater. Chem. A 3 (2015) 24547-24556.
DOI URL |
[21] |
H.W. Huang, K. Xiao, Y. He, T.R. Zhang, F. Dong, X. Du, Y.H. Zhang, Appl. Catal. B Environ. 199 (2016) 75-86.
DOI URL |
[22] |
Y. Su, H.F. Li, H.B. Ma, J. Robertson, A. Nathan, ACS Appl. Mater. Interfaces 9 (2017) 8100-8106.
DOI URL |
[23] |
W. Wang, H. Ke, J.C. Rao, M. Feng, Y. Zhou, J. Alloy. Compd. 504 (2010) 367-370.
DOI URL |
[24] |
W.Q. Zhang, A.D. Li, Q.Y. Shao, Y.D. Xia, D. Wu, Z.G. Liu, N.B. Ming, Appl. Surf. Sci. 254 (2008) 1583-1586.
DOI URL |
[25] |
V. Senthil, T. Badapanda, A. Chandrabose, S. Panigrahi, Mater. Lett. 159 (2015) 138-141.
DOI URL |
[26] |
Y.X. Li, L. Zang, Y. Li, Y. Liu, C.Y. Liu, Y. Zhang, H.Q. He, C.Y. Wang, Chem. Mater. 25 (2013) 2045-2050.
DOI URL |
[27] |
R.G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049-4050.
DOI URL |
[28] |
M.M. Dou, J. Wang, B.R. Gao, C. Xu, F. Yang, Chem. Eng. J. 383 (2020) 123134.
DOI URL |
[29] |
C.C. Wu, C.F. Yang, Sci. Rep. 10 (2020) 1-14.
DOI URL |
[30] | V. Senthil, T. Badapanda, A. Chithambararaj, A.C. Bose, S. Panigrahi, Int. J. Hy- drog. Energy 41 (2016) 22856-22865. |
[31] |
N. Ortega, P. Bhattacharya, R. Katiyar, Mater. Sci. Eng. B 130 (2006) 36-40.
DOI URL |
[32] |
Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 74 (1999) 1904-1906.
DOI URL |
[33] |
V. Senthil, S. Panigrahi, Int. J. Hydrog. Energy 44 (2019) 18058-18071.
DOI URL |
[34] |
M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, M. Daoud, J. Electron. Mater. 47 (2018) 3398-3402.
DOI URL |
[35] |
S. Zanetti, E. Leite, E. Longo, E. Araújo, A. Chiquito, J. Eiras, J. Varela, J. Mater. Res. 15 (20 0 0) 2091-2095.
DOI URL |
[36] |
H.W. Huang, K. Xiao, S.X. Yu, F. Dong, T.R. Zhang, Y.H. Zhang, Chem. Commun. 52 (2016) 354-357.
DOI URL |
[37] |
H.B. He, W.J. Yao, C.S. Wang, X. Feng, X.H. Lu, Ind. Eng. Chem. Res. 52 (2013) 15034-15040.
DOI URL |
[38] |
R. Hailili, Z.Q. Wang, Y. Li, Y. Wang, V.K. Sharma, X.Q. Gong, C. Wang, Appl. Catal. B Environ. 221 (2018) 422-432.
DOI URL |
[39] |
L.H. Li, J.X. Deng, J. Chen, X.Y. Sun, R.B. Yu, G.R. Liu, X.R. Xing, Chem. Mater. 21 (2009) 1207-1213.
DOI URL |
[40] |
J.T. Zeng, K.W. Kwok, H. Chan, Mater. Lett. 61 (2007) 409-411.
DOI URL |
[41] |
Q.Y. Tang, Y.M. Kan, P.L. Wang, Y.G. Li, G.J. Zhang, J. Am. Ceram. Soc. 90 (2007) 3353-3356.
DOI URL |
[42] |
T. Wu, Y.F. Liu, Y.N. Lu, L. Wei, H. Gao, H. Chen, CrystEngComm 15 (2013) 2761-2768.
DOI URL |
[43] |
X. Wang, L.S. Gao, F. Zhou, Z.D. Zhang, M.R. Ji, C.M. Tang, T. Shen, H.G. Zheng, J. Cryst. Growth 265 (2004) 220-223.
DOI URL |
[44] |
K. Wang, J. Li, G. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 27686-27696.
DOI URL |
[45] |
G. Yang, Y. Liang, Z.R. Xiong, J. Yang, K. Wang, Z.K. Zeng, Chem. Eng. J. 425 (2021) 130689.
DOI URL |
[46] |
Y. Xu, Y. You, H.W. Huang, Y.X. Guo, Y.H. Zhang, J. Hazard. Mater. 381 (2020) 121159.
DOI URL |
[47] |
G. Yang, Y.A. Zhu, Y.J. Liang, J. Yang, K. Wang, Z.K. Zeng, R. Xu, X. Xie, Appl. Surf. Sci. 539 (2021) 148038.
DOI URL |
[48] |
X. Hu, H.P. Zhao, Y. Liang, F.X. Chen, J. Li, R. Chen, Chemosphere 264 (2021) 128434.
DOI URL |
[49] |
S.J. Li, J.L. Chen, S.W. Hu, H.L. Wang, W. Jiang, X.B. Chen, Chem. Eng. J. 402 (2020) 126165.
DOI URL |
[50] |
A. Verma, S. Kumar, Y.P. Fu, Chem. Eng. J. 408 (2021) 127290.
DOI URL |
[51] |
B. Wang, J. Di, P.F. Zhang, J.X. Xia, S. Dai, H.M. Li, Appl. Catal. B Environ. 206 (2017) 127-135.
DOI URL |
[52] |
B. Wang, G.P. Liu, B.S. Ye, Y.Z. Ye, W. Zhu, S. Yin, J.X. Xia, H.M. Li, J. Photochem. Photobiol. A Chem. 382 (2019) 111901.
DOI URL |
[53] |
Z. Li, R. Zheng, S.J. Dai, T.L. Zhao, M. Chen, Q.W. Zhang, J. Alloy. Compd. 882 (2021) 160681.
DOI URL |
[54] |
Y.N. Shang, C. Chen, P. Zhang, Q.Y. Yue, Y.W. Li, B.Y. Gao, X. Xu, Chem. Eng. J. 375 (2019) 122004.
DOI URL |
[55] |
X.Y. Fan, K.R. Lai, L.C. Wang, H.S. Qiu, J. Yin, P.J. Zhao, S.L. Pan, J.B. Xu, C. Y. Wang, J. Mater. Chem. A 3 (2015) 12179-12187.
DOI URL |
[56] |
X.Y. Fan, Y. Zhang, K.D. Zhong, Nanoscale 10 (2018) 20443-20452.
DOI URL |
[57] |
J. Liu, X.F. Fan, Y.Q. Zhu, J. Zhao, F.X. Jiang, S. Chen, H. Sun, J.K. Xu, W.Y. Deng, C. Y. Wang, Appl. Catal. B-Environ. 181 (2016) 436-4 4 4.
DOI URL |
[58] |
Y. Zhang, Y.F. Zhai, Y. Yu, Z. Su, J. Yin, C.Y. Wang, X.Y. Fan, Catal. Sci. Technol. 9 (2019) 2273-2281.
DOI |
[59] |
Y.F. Zhai, Y. Zhang, J. Yin, X.F. Fan, Appl. Surf. Sci. 484 (2019) 981-989.
DOI URL |
[60] |
H. Yi, D.L. Huang, L. Qin, G.M. Zeng, C. Lai, M. Cheng, S.J. Ye, B. Song, X.Y. Ren, X. Y. Guo, Appl. Catal. B Environ. 239 (2018) 408-424.
DOI URL |
[61] |
Z.S. Xie, Z.Y. Cui, J.F. Shi, C. Lin, K. Zhang, G.L. Yuan, J.M. Liu, Nanoscale 12 (2020) 18446-18454.
DOI URL |
[62] |
H. Tong, S.X. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24 (2012) 229-251.
DOI URL |
[63] |
Y.X. Li, S. Chen, H.Q. He, Y. Zhang, C.Y. Wang, ACS Appl. Mater. Interfaces 5 (2013) 10260-10265.
DOI URL |
[64] |
J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 50 (2011) 2133-2137.
DOI URL |
[65] |
C. Liu, S. Mao, M.X. Shi, F.Y. Wang, M.Z. Xia, Q. Chen, X.H. Ju, J. Hazard. Mater. 420 (2021) 126613.
DOI URL |
[66] |
J.B. Wang, D. Zhi, H. Zhou, X.W. He, D.Y. Zhang, Water Res. 137 (2018) 324-334.
DOI URL |
[67] |
Y. Pan, X.Z. Yuan, L.B. Jiang, H. Wang, H.B. Yu, J. Zhang, Chem. Eng. J. 384 (2020) 123310.
DOI URL |
[68] |
X. Xu, X. Ding, X.L. Yang, P. Wang, S. Li, Z.X. Lu, H. Chen, J. Hazard. Mater. 364 (2019) 691-699.
DOI URL |
[69] |
F.L. Wang, Y.P. Feng, P. Chen, Y.F. Wang, Y.H. Su, Q.X. Zhang, Y.Q. Zeng, Z.J. Xie, H.J. Liu, Y. Liu, W.Y. Lv, G.G. Liu, Appl. Catal. B Environ. 227 (2018) 114-122.
DOI URL |
[70] |
F. Chen, Q. Yang, Y.L. Wang, F.B. Yao, Y.H. Ma, X.D. Huang, X.M. Li, D.B. Wang, G. M. Zeng, H.Q. Yu, Chem. Eng. J. 348 (2018) 157-170.
DOI URL |
[71] |
C. Winder, R. Azzi, D. Wagner, J. Hazard. Mater. 125 (2005) 29-44.
PMID |
[72] |
C.S. Fung, M. Khan, A. Kumar, I.M. Lo, Sep. Purif. Technol. 216 (2019) 102-114.
DOI URL |
[1] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[2] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
[3] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[4] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
[5] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[6] | Dao Wang, Yan Zhang, Jiali Wang, Chunlai Luo, Ming Li, Wentao Shuai, Ruiqiang Tao, Zhen Fan, Deyang Chen, Min Zeng, Jiyan Y. Dai, Xubing B. Lu, J.-M. Liu. Enhanced ferroelectric polarization with less wake-up effect and improved endurance of Hf0.5Zr0.5O2 thin films by implementing W electrode [J]. J. Mater. Sci. Technol., 2022, 104(0): 1-7. |
[7] | Xudong Qi, Kai Li, Enwei Sun, Bingqian Song, Da Huo, Jiaming Li, Xianjie Wang, Rui Zhang, Bin Yang, Wenwu Cao. Large photovoltaic effect with ultrahigh open-circuit voltage in relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 119-126. |
[8] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
[9] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[10] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
[11] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[12] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
[13] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[14] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
[15] | Kezhen Qi, Chunqiang Zhuang, Manjie Zhang, Peyman Gholami, Alireza Khataee. Sonochemical synthesis of photocatalysts and their applications [J]. J. Mater. Sci. Technol., 2022, 123(0): 243-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||