J. Mater. Sci. Technol. ›› 2022, Vol. 123: 201-221.DOI: 10.1016/j.jmst.2021.12.068
• Research Article • Previous Articles Next Articles
Qingping Suna,b,*(), Shahryar Asqardoustb, Abhishek Sarmahb, Mukesh K. Jainb
Received:
2021-10-05
Revised:
2021-12-14
Accepted:
2021-12-27
Published:
2022-10-01
Online:
2022-09-30
Contact:
Qingping Sun
About author:
*College of Aerospace and Civil Engineering, Harbin En- gineering University, Harbin 150001, China. E-mail address: sqp@hrbeu.edu.cn (Q. Sun).Qingping Sun, Shahryar Asqardoust, Abhishek Sarmah, Mukesh K. Jain. Elastoplastic analysis of AA7075-O aluminum sheet by hybrid micro-scale representative volume element modeling with really-distributed particles and in-situ SEM experimental testing[J]. J. Mater. Sci. Technol., 2022, 123: 201-221.
Zn | Mg | Cu | Cr | Fe | Mn | Si | Ti | Al |
---|---|---|---|---|---|---|---|---|
5.829 | 2.605 | 1.662 | 0.192 | 0.163 | 0.02 | 0.02 | 0.022 | Balance |
Table 1. Chemical composition of 7075-O sheet (wt%).
Zn | Mg | Cu | Cr | Fe | Mn | Si | Ti | Al |
---|---|---|---|---|---|---|---|---|
5.829 | 2.605 | 1.662 | 0.192 | 0.163 | 0.02 | 0.02 | 0.022 | Balance |
Fig. 1. (a) Geometry and dimension of hourglass-shaped specimen for in-situ interrupted tensile tests. The scans are performed on the specimen flat side (dashed rectangle). (b) SEM images showing area of interest viz. Location 1 and Location 2 with respect to micro-indents on specimen surface. The load-displacement curves for in-situ interrupted tension test along (c) RD and (d) TD. The drops in the curves marked with letters ⅰ (Ⅰ), ⅱ (Ⅱ), ⅲ (Ⅲ), ⅳ (Ⅳ), ⅴ (Ⅴ) and ⅵ (Ⅵ) are when the tests are interrupted for SEM imaging. Final stage of failure for (e) RD tension and (f) TD tension.
Fig. 2. A sequence of in-situ SEM images of (a) micro-hardness indent location 1 (1000× magnification) and (b) micro-hardness indent location 2 (2000× magnification) under RD tension, when interrupted at sequential points ⅰ, ⅱ, ⅲ, ⅳ, ⅴ and ⅵ marked in the load-displacement curve.
Fig. 3. A sequence of in-situ SEM images of (a) micro-hardness indent location 1 (1000× magnification) and (b) micro-hardness indent location 2 (2000× magnification) under TD tension, when interrupted at sequential points Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ and Ⅵ marked in the load-displacement curve.
Fig. 4. (a) The comparisons of load-displacement curves for in-situ SEM tensile test along RD and TD. The in-situ SEM observation of the slip system in RD and TD tension, when applied displacements are (b) 0.7 mm and (c) 1.1 mm.
Fig. 5. SEM images (top) and μ-DIC equivalent Mises strain maps overlapping with microstructures for in-situ SEM tensile tests along (a) RD and (b) TD.
Fig. 7. Schematic diagram of reconstruction 3D micro-scale RVE model with real distribution of particles based on FIB-SEM technique by using AVIZO software.
RVE model | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 |
---|---|---|---|---|---|---|---|---|---|
VP (µm3) | >1 | >0.4 | >0.2 | >0.1 | >0.05 | >0.03 | >0.01 | >0.002 | >0.0001 |
Particle count | 10 | 15 | 32 | 50 | 86 | 131 | 295 | 692 | 1897 |
Total Vf (%) | 2.932 | 3.175 | 3.586 | 3.864 | 4.043 | 4.152 | 4.322 | 4.559 | 4.717 |
Vf -Al3Fe (%) | 1.777 | 1.777 | 1.777 | 1.777 | 1.777 | 1.777 | 1.780 | 1.790 | 1.794 |
Vf -η (MgZn2) (%) | 1.155 | 1.398 | 1.7902 | 2.0398 | 2.1534 | 2.2506 | 2.3488 | 2.4793 | 2.566 |
Vf -θ (CuAl2) (%) | 0 | 0 | 0.0188 | 0.0472 | 0.1126 | 0.1244 | 0.1932 | 0.2897 | 0.357 |
Number of nodes | 571,787 | 598,229 | 637,321 | 717,304 | 785,778 | 864,862 | 1,121,673 | 1,573,254 | 2,261,788 |
Number of elements | 2,239,552 | 2,381,205 | 2,594,724 | 3,023,743 | 3,396,553 | 3,822,849 | 5,213,780 | 7,691,213 | 11,480,325 |
Table 2. The summary of particle count, total particle volume fraction, particle volume fraction of each particle, and number of nodes and elements in RVE case 1-9.
RVE model | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 |
---|---|---|---|---|---|---|---|---|---|
VP (µm3) | >1 | >0.4 | >0.2 | >0.1 | >0.05 | >0.03 | >0.01 | >0.002 | >0.0001 |
Particle count | 10 | 15 | 32 | 50 | 86 | 131 | 295 | 692 | 1897 |
Total Vf (%) | 2.932 | 3.175 | 3.586 | 3.864 | 4.043 | 4.152 | 4.322 | 4.559 | 4.717 |
Vf -Al3Fe (%) | 1.777 | 1.777 | 1.777 | 1.777 | 1.777 | 1.777 | 1.780 | 1.790 | 1.794 |
Vf -η (MgZn2) (%) | 1.155 | 1.398 | 1.7902 | 2.0398 | 2.1534 | 2.2506 | 2.3488 | 2.4793 | 2.566 |
Vf -θ (CuAl2) (%) | 0 | 0 | 0.0188 | 0.0472 | 0.1126 | 0.1244 | 0.1932 | 0.2897 | 0.357 |
Number of nodes | 571,787 | 598,229 | 637,321 | 717,304 | 785,778 | 864,862 | 1,121,673 | 1,573,254 | 2,261,788 |
Number of elements | 2,239,552 | 2,381,205 | 2,594,724 | 3,023,743 | 3,396,553 | 3,822,849 | 5,213,780 | 7,691,213 | 11,480,325 |
Fig. 9. Illustration of the mesh generated for the RVE case 7 and examples of three main kinds of particle in the RVE model, each meshed by a set of tetrahedral elements.
Fig. 10. Illustration of a three-phase heterogeneous material used in the micro-scale RVE case 6 for computational analysis: Al matrix (phase 1) with real distribution of second-phase particles (phase 2) and interface between particle and matrix (phase 3).
Fig. 11. (a) Experimental plastic stress-plastic strain curve of the AA7075-O alloy and Holloman fitting of the data. (b) Bilinear constitutive model for mixed modes involving mode-I and shear modes.
Particles | E11 (GPa) | E22 (GPa) | E33 (GPa) | G12 (GPa) | G13 (GPa) | G23 (GPa) | v12 | v13 | v23 |
---|---|---|---|---|---|---|---|---|---|
MgZn2 [ | 85.92 | 85.92 | 116.5 | 30.9 | 27.7 | 27.7 | 0.389 | 0.133 | 0.133 |
Al3Fe [ | 210.7 | 217.2 | 217.2 | 93 | 59 | 56 | 0.275 | 0.157 | 0.171 |
CuAl2 [ | 142 | 142 | 130.6 | 47 | 29 | 29 | 0.246 | 0.333 | 0.33 |
Table 3. Material properties of second-phase particles.
Particles | E11 (GPa) | E22 (GPa) | E33 (GPa) | G12 (GPa) | G13 (GPa) | G23 (GPa) | v12 | v13 | v23 |
---|---|---|---|---|---|---|---|---|---|
MgZn2 [ | 85.92 | 85.92 | 116.5 | 30.9 | 27.7 | 27.7 | 0.389 | 0.133 | 0.133 |
Al3Fe [ | 210.7 | 217.2 | 217.2 | 93 | 59 | 56 | 0.275 | 0.157 | 0.171 |
CuAl2 [ | 142 | 142 | 130.6 | 47 | 29 | 29 | 0.246 | 0.333 | 0.33 |
Fig. 13. The contours plots of Von Mises stress in Al matrix at tensile strain of 40% in X (RD) direction for: (a) RVE model without any particles (matrix only). (b) RVE case 1. (c) RVE case 4 and (d) RVE case 7.
Fig. 14. (a) µ-DIC equivalent strain map and (b) RVE case 7 equivalent strain maps in the regions of high strain and low strain highlighted in red and yellow, respectively. (c) Comparing strain evolution at high local strain in shear bands and low local strain away from the slip bands between µ-DIC experimental result and RVE modeling result.
Fig. 16. (a) Comparison of stress-strain/strain-hardening curves between computational prediction for only matrix model as well as RVE cases 1,4,7,9 and experiment result under X-RD tension. (b) Comparison of stress-strain/strain-hardening curves between computational prediction of RVE case 7 under X-RD, Y-TD and Z-ND tension and experiment result.
Fig. 17. Parametric studies of the cohesive element parameters by changing interfacial properties of various particle/matrix interfaces and a comparison of RVE model (X-RD tension loading) and experimental stress-strain curve of material; (a) identical interface properties of irregularly-shaped Al3Fe/matrix interface and elliptic-shaped MgZn2/matrix interface for RVE case 1, (b, c) different irregularly-shaped Al3Fe/matrix and elliptic-shaped MgZn2/matrix interface properties for RVE case 1, and (d) different irregularly-shaped Al3Fe/matrix, elliptic-shaped MgZn2/matrix, and needlelike-shaped CuAl2/matrix interface properties for RVE case 7.
Cases of parametric studies | Interface properties | Failure initiation strain between particles and matrix (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Empty Cell | Empty Cell | Empty Cell | (MPa) | (N/mm2) | Al3Fe | MgZn2 | CuAl2 | ||
Empty Cell | Empty Cell | Empty Cell | Nn | Ss/St | GIc | GIIc | Empty Cell | Empty Cell | Empty Cell |
Same interfacial properties | Category I | Strong-case 1 | 500 | 700 | 0.01 | 0.03 | 7.62 | 12.70 | - |
Medium-case 2 | 200 | 280 | 0.005 | 0.015 | 5.03 | 7.06 | - | ||
Weak-case 3 | 50 | 70 | 0.001 | 0.003 | 2.02 | 3.33 | - | ||
Different interfacial properties | Category II | Strong MgZn2-case 1 | 500 | 700 | 0.01 | 0.03 | 7.62 | 12.70 | - |
Medium MgZn2-case 2 | 50 | 70 | 0.001 | 0.003 | 7.62 | 2.63 | - | ||
Weak MgZn2-case 3 | 25 | 35 | 0.0005 | 0.0015 | 7.62 | 2.02 | - | ||
Category II | Perfect Al3Fe-case 1 | 3000 | 6000 | 0.1 | 0.3 | - | 2.63 | - | |
Strong Al3Fe-case 2 | 500 | 700 | 0.01 | 0.03 | 7.62 | 2.63 | - | ||
Medium Al3Fe-case 3 | 350 | 490 | 0.007 | 0.021 | 6.00 | 2.63 | - | ||
Medium Al3Fe-case 4 | 200 | 280 | 0.005 | 0.015 | 5.03 | 2.63 | - | ||
Weak Al3Fe-case 5 | 50 | 70 | 0.001 | 0.003 | 2.02 | 2.63 | - | ||
Category III | Perfect CuAl2-case 1 | 3000 | 6000 | 0.1 | 0.3 | 7.62 | 2.63 | - | |
Weak CuAl2-case 2 | 50 | 70 | 0.001 | 0.003 | 7.62 | 2.63 | 2.98 |
Table 4. Summary of results from the parametric studies of the cohesive zone model parameters.
Cases of parametric studies | Interface properties | Failure initiation strain between particles and matrix (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Empty Cell | Empty Cell | Empty Cell | (MPa) | (N/mm2) | Al3Fe | MgZn2 | CuAl2 | ||
Empty Cell | Empty Cell | Empty Cell | Nn | Ss/St | GIc | GIIc | Empty Cell | Empty Cell | Empty Cell |
Same interfacial properties | Category I | Strong-case 1 | 500 | 700 | 0.01 | 0.03 | 7.62 | 12.70 | - |
Medium-case 2 | 200 | 280 | 0.005 | 0.015 | 5.03 | 7.06 | - | ||
Weak-case 3 | 50 | 70 | 0.001 | 0.003 | 2.02 | 3.33 | - | ||
Different interfacial properties | Category II | Strong MgZn2-case 1 | 500 | 700 | 0.01 | 0.03 | 7.62 | 12.70 | - |
Medium MgZn2-case 2 | 50 | 70 | 0.001 | 0.003 | 7.62 | 2.63 | - | ||
Weak MgZn2-case 3 | 25 | 35 | 0.0005 | 0.0015 | 7.62 | 2.02 | - | ||
Category II | Perfect Al3Fe-case 1 | 3000 | 6000 | 0.1 | 0.3 | - | 2.63 | - | |
Strong Al3Fe-case 2 | 500 | 700 | 0.01 | 0.03 | 7.62 | 2.63 | - | ||
Medium Al3Fe-case 3 | 350 | 490 | 0.007 | 0.021 | 6.00 | 2.63 | - | ||
Medium Al3Fe-case 4 | 200 | 280 | 0.005 | 0.015 | 5.03 | 2.63 | - | ||
Weak Al3Fe-case 5 | 50 | 70 | 0.001 | 0.003 | 2.02 | 2.63 | - | ||
Category III | Perfect CuAl2-case 1 | 3000 | 6000 | 0.1 | 0.3 | 7.62 | 2.63 | - | |
Weak CuAl2-case 2 | 50 | 70 | 0.001 | 0.003 | 7.62 | 2.63 | 2.98 |
Fig. 18. The interfacial failure initiation and propagation of the cohesive element parameters, where Points A and B are marked in the strain-stress curves in Fig. 17(a). X-axis is the loading direction.
Fig. 19. The interfacial failure initiation and propagation of the cohesive element parameters, where Points C and D are marked in the strain-stress curves in Fig. 17(b). X-axis is the loading direction.
Fig. 20. The interfacial failure initiation and propagation of the cohesive element parameters, where Points E and F are marked in the strain-stress curves in Fig. 17(c). X-axis is the loading direction.
Fig. 21. The interfacial failure initiation and propagation of the cohesive element parameters, where Points G, H and I are marked in the strain-stress curves in Fig. 17(d). X-axis is the loading direction.
Fig. 22. Comparison of stress-strain/strain-hardening curves between with interfacial failure and without interfacial failure for (a) RVE case 1 and (b) RVE case 7.
[1] |
J.F. Li, Z.W. Peng, C.X. Li, Z.Q. Jia, W.J. Chen, Z.Q. Zheng, Trans. Nonferr. Met. Soc. 18 (2008) 755-762.
DOI URL |
[2] |
X. Sun, B. Zhang, H. Lin, Y. Zhou, L. Sun, J. Wang, E.H. Han, W. Ke, Corros. Sci. 77 (2013) 103-112.
DOI URL |
[3] | I. Polmear, Light Alloys: from Traditional Alloys to Nanocrystals, Elsevier, 2005. |
[4] |
G. Hahn, A. Rosenfield, Metall. Mater. Trans. A 6 (1975) 653-668.
DOI URL |
[5] |
H. Song, C. Liu, H. Zhang, J. Du, X. Yang, S.B. Leen, Int. J. Fatigue 137 (2020) 105655.
DOI URL |
[6] |
T.F. Kelly, M.K. Miller, Rev. Sci. Instrum. 78 (2007) 031101.
DOI URL |
[7] |
D.J. Jensen, H.F. Poulsen, Mater. Charact. 72 (2012) 1-7.
DOI URL |
[8] |
L. Salvo, M. Suéry, A. Marmottant, N. Limodin, D. Bernard, C. R. Phys. 11 (2010) 641-649.
DOI URL |
[9] | M.D. Uchic, in: Computational Methods for Microstructure-Property Relation- ships, Springer, 2011, pp. 31-52. |
[10] |
H. Pirgazi, K. Glowinski, A. Morawiec, L.A. Kestens, J. Appl. Crystallogr. 48 (2015) 1672-1678.
DOI URL |
[11] |
E.Y. Guo, N. Chawla, T. Jing, S. Torquato, Y. Jiao, Mater. Charact. 89 (2014) 33-42.
DOI URL |
[12] |
F. Lasagni, A. Lasagni, E. Marks, C. Holzapfel, F. Mücklich, H. Degischer, Acta Mater. 55 (2007) 3875-3882.
DOI URL |
[13] |
O. Furukimi, C. Kiattisaksri, Y. Takeda, M. Aramaki, S. Oue, S. Munetoh, M. Tanaka, Mater. Sci. Eng. A 701 (2017) 221-225.
DOI URL |
[14] |
H. Scott, J. Boyd, A. Pilkey, Mat. Sci. Eng. A Struct. 682 (2017) 139-146.
DOI URL |
[15] |
E. Maire, S. Zhou, J. Adrien, M. Dimichiel, Eng. Fract. Mech. 78 (2011) 2679-2690.
DOI URL |
[16] |
A. Ghahremaninezhad, K. Ravi-Chandar, Int. J. Fract. 174 (2012) 177-202.
DOI URL |
[17] |
T. Ueda, L. Helfen, T.F. Morgeneyer, Acta Mater. 78 (2014) 254-270.
DOI URL |
[18] |
F. Bron, J. Besson, A. Pineau, Mat. Sci. Eng. A Struct. 380 (2004) 356-364.
DOI URL |
[19] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[20] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[21] |
J. Xu, R. Li, Q. Li, Metall. Mater. Trans. A 52 (2021) 1077-1094.
DOI URL |
[22] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[23] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
[24] |
J. Xu, Y. Li, K. Ma, Y. Fu, E. Guo, Z. Chen, Q. Gu, Y. Han, T. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[25] |
J. Xu, Y. Li, B. Hu, Y. Jiang, Q. Li, J. Mater. Sci. 54 (2019) 14561-14576.
DOI |
[26] |
Y. Li, B. Hu, Q. Gu, B. Liu, Q. Li, Scr. Mater. 160 (2019) 75-80.
DOI URL |
[27] |
W. Xiao, B. Wang, K. Zheng, Int. J. Adv. Manuf. Technol. 92 (2017) 3299-3309.
DOI URL |
[28] |
Q. Wu, W. Xu, L. Zhang, Compos. Part B Eng. 163 (2019) 384-392.
DOI URL |
[29] |
X. Hu, M. Jain, D. Wilkinson, R. Mishra, Acta Mater. 56 (2008) 3187-3201.
DOI URL |
[30] |
X. Hu, D.S. Wilkinson, M. Jain, R.K. Mishra, Int. J. Solids Struct. 46 (2009) 2650-2658.
DOI URL |
[31] |
X. Hu, D.S. Wilkinson, M. Jain, R.K. Mishra, Int. J. Fract. 164 (2010) 167-183.
DOI URL |
[32] |
Q. Sun, G. Zhou, Z. Meng, H. Guo, Z. Chen, H. Liu, H. Kang, S. Keten, X. Su, Compos. Sci. Technol. 172 (2019) 81-95.
DOI URL |
[33] |
Q. Sun, Z. Meng, G. Zhou, S.P. Lin, H. Kang, S. Keten, H. Guo, X. Su, Compos. Struct. 196 (2018) 30-43.
DOI URL |
[34] |
Q. Sun, G. Zhou, H. Guo, Z. Meng, Z. Chen, H. Liu, H. Kang, X. Su, Compos. Part B Eng. 167 (2019) 147-160.
DOI URL |
[35] |
Q. Sun, G. Zhou, Z. Meng, M. Jain, X. Su, Compos. Sci. Technol. 202 (2021) 108560.
DOI URL |
[36] |
Q. Sun, H. Guo, G. Zhou, Z. Meng, Z. Chen, H. Kang, S. Keten, X. Su, Compos. Struct. 203 (2018) 335-348.
DOI URL |
[37] |
Q. Sun, G. Zhou, H. Tang, Z. Meng, M. Jain, X. Su, W. Han, Compos. Struct. 261 (2021) 113592.
DOI URL |
[38] |
Q. Sun, G. Zhou, H. Tang, Z. Chen, J. Fenner, Z. Meng, M. Jain, X. Su, Compos. Part B Eng. 215 (2021) 108803.
DOI URL |
[39] |
N. Chawla, R. Sidhu, V. Ganesh, Acta Mater. 54 (2006) 1541-1548.
DOI URL |
[40] |
Y. Zhu, H. Kishawy, Int. J. Mach. Tools Manuf. 45 (2005) 389-398.
DOI URL |
[41] |
W. Han, A. Eckschlager, H.J. Böhm, Compos. Sci. Technol. 61 (2001) 1581-1590.
DOI URL |
[42] |
E. Law, S. Dai Pang, S.T. Quek, Acta Mater. 60 (2012) 8-21.
DOI URL |
[43] |
S.S. Singh, J.J. Loza, A.P. Merkle, N. Chawla, Mater. Charact. 118 (2016) 102-111.
DOI URL |
[44] |
X. Tu, A. Shahba, J. Shen, S. Ghosh, Int. J. Plast. 115 (2019) 268-292.
DOI URL |
[45] |
X. Chao, L. Qi, W. Tian, K. Yang, H. Li, J. Alloy. Compd. 820 (2020) 153378.
DOI URL |
[46] |
D. Cao, Q. Duan, H. Hu, Y. Zhong, S. Li, Compos. Struct. 192 (2018) 300-309.
DOI URL |
[47] |
M. de Francisco, I. Carol, Int. J. Numer. Methods Eng. 122 (2021) 796-822.
DOI URL |
[48] |
Q. Sun, M. Jain, Int. J. Mech. Sci. (2022) 107192, doi: 10.1016/j.ijmecsci.2022. 107192.
DOI |
[49] | A.A. Benzerga, J.B. Leblond, in: Advances in Applied Mechanics, Elsevier, 2010, pp. 169-305. |
[50] | D. Gewirth, in: The HKL Manual, Yale University, New Haven, CT, 2003, p. 6511. |
[51] |
H. Agarwal, A. Gokhale, S. Graham, M. Horstemeyer, Mater. Sci. Eng. A 341 (2003) 35-42.
DOI URL |
[52] |
M. Lugo, J. Jordon, M. Horstemeyer, M. Tschopp, J. Harris, A. Gokhale, Mater. Sci. Eng. A 528 (2011) 6708-6714.
DOI URL |
[53] |
M.F. Horstemeyer, A.M. Gokhale, Int. J. Solid Struct. 36 (1999) 5029-5055.
DOI URL |
[54] |
Y. Shen, T.F. Morgeneyer, J. Garnier, L. Allais, L. Helfen, J. Crépin, Acta Mater. 61 (2013) 2571-2582.
DOI URL |
[55] |
I. Gitman, H. Askes, L. Sluys, Eng. Fract. Mech. 74 (2007) 2518-2534.
DOI URL |
[56] |
T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Int. J. Solid Struct. 40 (2003) 3647-3679.
DOI URL |
[57] |
G. Chen, A. Bezold, C. Broeckmann, Compos. Struct. 189 (2018) 330-339.
DOI URL |
[58] |
P.M. Carneiro, P.V. Gamboa, C. Baudín, A.P. Silva, J. Eur. Ceram. Soc. 40 (2020) 901-910.
DOI URL |
[59] |
I. Singh, A. Shedbale, B. Mishra, J. Compos. Mater. 50 (2016) 2757-2771.
DOI URL |
[60] |
W. Kaddouri, A. El Moumen, T. Kanit, S. Madani, A. Imad, Mech. Mater. 92 (2016) 28-41.
DOI URL |
[61] |
R. Patil, B. Mishra, I. Singh, Int. J. Mech. Sci. 122 (2017) 277-287.
DOI URL |
[62] | T.F. Scientific, Thermo Scientific Avizo Software 9 User’s Guide, 2018. |
[63] | G. Abaqus, Abaqus 6.11, Dassault Systemes Simulia Corporation, Providence, RI, USA, 2011. |
[64] |
M. Kenane, M. Benzeggagh, Compos. Sci. Technol. 57 (1997) 597-605.
DOI URL |
[65] |
E. Totry, C. González, J. LLorca, Compos. Sci. Technol. 68 (2008) 829-839.
DOI URL |
[66] |
S. Sádaba, M. Herráez, F. Naya, C. González, J. Llorca, C. Lopes, Compos. Struct. 208 (2019) 434-441.
DOI URL |
[67] |
P.-l. Mao, Y. Bo, L. Zheng, W. Feng, J. Yang, Trans. NonFerr. Met. Soc. 24 (2014) 2920-2929.
DOI URL |
[68] |
Z. Xia, B. Wen, C. Fan, Metals 9 (2019) 1322.
DOI URL |
[69] |
X. Zhou, D. Ward, M. Foster, J. Alloy. Compd. 680 (2016) 752-767.
DOI URL |
[70] |
M. Kiser, F. Zok, D. Wilkinson, Acta Mater. 44 (1996) 3465-3476.
DOI URL |
[71] |
L. Ceschini, G. Minak, A. Morri, Compos. Sci. Technol. 69 (2009) 1783-1789.
DOI URL |
[72] |
A.A. Iqbal, S. Chen, Y. Arai, W. Araki, Eng. Fail. Anal. 52 (2015) 109-115.
DOI URL |
[73] |
C. González, J. LLorca, Compos. Sci. Technol. 67 (2007) 2795-2806.
DOI URL |
[1] | J.F. Zhang, X.X. Zhang, H. Andrä, Q.Z. Wang, B.L. Xiao, Z.Y. Ma. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87(0): 167-175. |
[2] | J.F. Zhang, X.X. Zhang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34(4): 627-634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||