J. Mater. Sci. Technol. ›› 2022, Vol. 123: 191-200.DOI: 10.1016/j.jmst.2022.01.025
• Research Article • Previous Articles Next Articles
Bingjie Wanga, Qianqian Wanga,b, Nan Luc, Xiubing Liangc,*(), Baolong Shena,*(
)
Received:
2021-11-10
Revised:
2022-01-17
Accepted:
2022-01-20
Published:
2022-10-01
Online:
2022-09-30
Contact:
Xiubing Liang,Baolong Shen
About author:
blshen@seu.edu.cn (B. Shen).Bingjie Wang, Qianqian Wang, Nan Lu, Xiubing Liang, Baolong Shen. Enhanced high-temperature strength of HfNbTaTiZrV refractory high-entropy alloy via Al2O3 reinforcement[J]. J. Mater. Sci. Technol., 2022, 123: 191-200.
Fig. 2. Compressive engineering stress-strain curves of (a) the as-cast 0-4 vol.% Al2O3-reinforced HfNbTaTiZrV alloys at room temperature, (b) 4 vol.% Al2O3 alloy at elevated temperatures.
Properties | Alloys | |||||
---|---|---|---|---|---|---|
Empty Cell | HfNbTaTiZrV | 1 vol.% Al2O3 | 2 vol.% Al2O3 | 3 vol.% Al2O3 | 4 vol.% Al2O3 | 5 vol.% Al2O3 |
Yield strength (MPa) | 1300 | 1986 | 2149 | 2283 | 2700 | 2696 |
Fracture strength (MPa) | 2246 | 3164 | 2467 | 2719 | 2739 | 2726 |
Plastic strain (%) | 32 | 22 | 7 | 6.5 | 6 | 4 |
Table 1. Compressive mechanical properties for x vol.% Al2O3-reinforced HfNbTaTiZrV alloys at room temperature.
Properties | Alloys | |||||
---|---|---|---|---|---|---|
Empty Cell | HfNbTaTiZrV | 1 vol.% Al2O3 | 2 vol.% Al2O3 | 3 vol.% Al2O3 | 4 vol.% Al2O3 | 5 vol.% Al2O3 |
Yield strength (MPa) | 1300 | 1986 | 2149 | 2283 | 2700 | 2696 |
Fracture strength (MPa) | 2246 | 3164 | 2467 | 2719 | 2739 | 2726 |
Plastic strain (%) | 32 | 22 | 7 | 6.5 | 6 | 4 |
Fig. 3. Fracture surfaces of the Al2O3-reinforced alloys compressed at room temperature (a) HfNbTaTiZrV alloy, (b) 1 vol.% Al2O3 alloy, (c) 2 vol.% Al2O3 alloy, (d) 4 vol.% Al2O3 alloy.
Fig. 4. EBSD images of the as-cast Al2O3-reinforced HfNbTaTiZrV alloys at room temperature (a) HfNbTaTiZrV alloy, (b) 1 vol.% Al2O3 alloy, (c) 2 vol.% Al2O3 alloy, (d) 3 vol.% Al2O3 alloy, (e) 4 vol.% Al2O3 alloy, (f) Average grain size of the alloys.
Fig. 5. Bright-field TEM images as-cast Al2O3-reinforced alloys (a) HfNbTaTiZrV alloy, (b) 1 vol.% Al2O3 alloy, (c) 2 vol.% Al2O3 alloy, (d) 4 vol.% Al2O3 alloy.
Fig. 6. HAADF-STEM micrograph of the as-cast 4 vol.% Al2O3 alloy along the [110] zone axis (Im-3m) and EDS mappings showing the distribution of elements.
Fig. 7. Bright-field TEM images of alloy with 5% strain at room temperature (a) HfNbTaTiZrV alloy, (b) SAED pattern of (a), (c) 4 vol.% Al2O3 alloy, (d) SAED pattern of (c).
Fig. 8. Lattice uniformity analysis of the HfNbTaTiZrV and 4 vol.% Al2O3 alloy alloys (a) and (b) HRTEM images of the HfNbTaTiV and 4 vol.% Al2O3 alloys viewed in [110] direction, respectively. (c) and (d) Inversed FFT images of (a) and (b), respectively. (e) and (f) Distribution maps of interatomic distances along [121] in the HfNbTaTiZrV and 4 vol.% Al2O3 alloys, respectively.
Fig. 9. Microstructure of the 4 vol.% Al2O3 alloy (a) X-ray diffraction patterns of various treatment, (b) Bright-field TEM image of the 4 vol.% Al2O3 alloy after 800 °C compression, (c) Bright-field TEM image of the 4 vol.% Al2O3 alloy after annealing at 800 °C for 3 h, (d) EBSD image of the 4 vol.% Al2O3 alloy after 800 °C compression, (e) Pole figures for {110}BCC of the 4 vol.% Al2O3 alloy deformed at various temperatures.
Fig. 10. (a) Schematic diagram of the solid strengthening, interstitial strengthening, grain boundary strengthening, and dispersion strengthening, respectively. Contributions of different strengthening mechanisms in the 4 vol.% Al2O3 alloy during compression at (b) Room temperature and (c) 800 °C.
Alloy | Grain size d (μm) | Oxides radius r (nm) | Oxides fraction fv (%) |
---|---|---|---|
HfNbTaTiZrV | 203 | — | — |
4vol.%Al2O3 | 50 | 40 | 1.9 |
Table 2. Parameters for strengthening mechanism calculation for HfNbTaTiZrV and 4 vol.% Al2O3 alloys during 800 °C compression at yield strain.
Alloy | Grain size d (μm) | Oxides radius r (nm) | Oxides fraction fv (%) |
---|---|---|---|
HfNbTaTiZrV | 203 | — | — |
4vol.%Al2O3 | 50 | 40 | 1.9 |
Fig. 11. Mechanical property comparison between the 4 vol.% Al2O3 alloy and other RHEAs (a) Temperature dependence on the yield strength, (b) Density-yield strength at elevated temperatures of 800 and 1000 °C.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
[3] |
Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Mater. Sci. Eng. A 712 (2018) 380-385.
DOI URL |
[4] |
S.Y. Wu, D.X. Qiao, H.T. Zhang, J.W. Miao, H.L. Zhao, J. Wang, Y.P. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 97 (2022) 229-238.
DOI URL |
[5] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10 (2019) 3563.
DOI URL |
[6] |
Y. Wu, F. Zhang, X.Y. Yuan, H.L. Huang, X.C. Wen, Y.H. Wang, M.Y. Zhang, H.H. Wu, X.J. Liu, H. Wang, S.H. Jiang, Z.P. Lu, J. Mater. Sci. Technol. 62 (2021) 214-220.
DOI |
[7] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[8] |
Q. Wang, J.C. Han, Y.F. Liu, Z.W. Zhang, C. Dong, P.K. Liaw, Scr. Mater. 190 (2021) 40-45.
DOI URL |
[9] |
B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y. Zheng, R.S. Mishra, R. Baner- jee, Acta Mater. 153 (2018) 169-185.
DOI URL |
[10] |
R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Acta Mater. 183 (2020) 64-77.
DOI URL |
[11] |
O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, C. Woodward, J. Mater. Sci. 47 (2012) 4062-4074.
DOI URL |
[12] |
S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Scr. Mater. 158 (2019) 50-56.
DOI URL |
[13] |
M. Wang, Z. Ma, Z. Xu, X. Cheng, Scr. Mater. 191 (2021) 131-136.
DOI URL |
[14] |
O.N. Senkov, G. Wilks, J. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[15] |
O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Acta Mater. 61 (2013) 1545-1557.
DOI URL |
[16] |
X. Duan, D. Jia, Z. Wu, Z. Tian, Z. Yang, S. Wang, Y. Zhou, Scr. Mater. 68 (2013) 104-107.
DOI URL |
[17] |
M.Y. Li, Y.H. Guo, W.M. Li, Y.W. Zhang, Y.Q. Chang, Mater. Sci. Eng. A 817 (2021) 141368.
DOI URL |
[18] |
X.C. Wen, Y. Wu, H.L. Huang, S.H. Jiang, H. Wang, XJ. Liu, Y. Zhang, X.Z. Wang, Z.P. Lu, Mater. Sci. Eng. A 805 (2021) 140798.
DOI URL |
[19] |
B. Gwalani, R.M. Pohan, O.A. Waseemc, T. Alam, S.H. Hong, H.J. Ryu, R. Baner- jee, Scr. Mater. 162 (2019) 477-481.
DOI URL |
[20] |
Ł. Rogal, D. Kalita, L.L. Dobrzynska, Intermetallics 86 (2017) 104-109.
DOI URL |
[21] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563 (2018) 546-550.
DOI URL |
[22] | R.A. Young, The Rietveld Method, Oxford University Press, 1993. |
[23] |
H. Hadraba, Z. Chlup, A. Dlouhy, Fe. Dobes, P. Roupcova, M. Vilemova, J. Mate- jicek, Mater. Sci. Eng. A 689 (2017) 252-256.
DOI URL |
[24] |
M. Tane, T. Nakano, S. Kuramoto, M. Niinomi, N. Takesue, H. Nakajim, Acta Mater. 61 (2013) 139-150.
DOI URL |
[25] |
Q.Q. Wei, L.Q. Wang, Y.F. Fu, J.N. Qin, W.J. Lu, D. Zhang, Mater. Des. 32 (2011) 2934-2939.
DOI URL |
[26] |
Y.X. Ye, B. Ouyang, C.Z. Liu, G.J. Duscher, T.G. Nieh, Acta Mater. 199 (2020) 413-424.
DOI URL |
[27] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62 (2014) 105-113.
DOI URL |
[28] |
S.F. Ge, H.M. Fu, L. Zhang, H.H. Mao, H. Li, A.M. Wang, W.R. Li, H.F. Zhang, Mater. Sci. Eng. A 784 (2020) 139275.
DOI URL |
[29] |
Y. Chen, Y. Li, X. Cheng, Z. Xu, C. Wu, B. Cheng, M. Wang, Mater. Lett. 228 (2018) 145-147.
DOI URL |
[30] |
J.A. Smeltzer, B.C. Hornbuckle, A.K. Giri, K.A. Darling, M.P. Harmer, H.M. Chan, C. J. Marvel, Acta Mater. 211 (2021) 116884.
DOI URL |
[31] |
Y.X. Ye, B. Ouyang, C.Z. Liu, G.J. Duscher, T.G. Nieh, Acta Mater. 199 (2020) 413-424.
DOI URL |
[32] | Y. Liu, G.P. Zheng, M Li, J. Alloy. Compd. 843 (2020) 15606. |
[33] |
F. He, D. Chen, B. Han, Q. Wu, Z. Wang, S. Wei, D. Wei, J. Wang, C. Liu, J.J. Kai, Acta Mater. 167 (2019) 275-286.
DOI URL |
[34] |
Z.B. An, S.C. Mao, Y.N. Liu, L. Wang, H. Zhou, B. Gan, Z. Zhang, X.D. Han, J. Mater. Sci. Technol. 79 (2021) 109-117.
DOI URL |
[35] |
T. Xiong, S.J. Zheng, J.Y. Pang, X.L. Ma, Scr. Mater. 186 (2020) 336-340.
DOI URL |
[36] |
I. Moravcik, H. Hadraba, L.L. Li, I. Dlouhy, D. Raabe, Z.M. Li, Scr. Mater. 178 (2020) 391-397.
DOI URL |
[37] |
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics 84 (2017) 153-157.
DOI URL |
[38] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Des. 81 (2015) 87-94.
DOI URL |
[39] |
C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 62 (2015) 76-83.
DOI URL |
[40] |
O.N. Senkov, S. Gorsse, D.B. Miracle, Acta Mater. 175 (2019) 394-405.
DOI |
[41] |
Y. Zhang, Y. Liu, Y. Li, X. Chen, H. Zhang, Mater. Lett. 174 (2016) 82-85.
DOI URL |
[42] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33 (2018) 3092-3128.
DOI URL |
[1] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[2] | Jiasi Luo, Wanting Sun, Ranxi Duan, Wenqing Yang, K.C. Chan, Fuzeng Ren, Xu-Sheng Yang. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
[3] | Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2019, 35(11): 2600-2607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||