J. Mater. Sci. Technol. ›› 2022, Vol. 98: 44-50.DOI: 10.1016/j.jmst.2021.05.007
• Letter • Previous Articles Next Articles
Fusen Yuana,b, Fuzhou Hana,b, Yingdong Zhanga,b, Ali Muhammada,b, Wenbin Guoa,b, Jie Rena,b, Chengze Liua,b, Hengfei Gua,c, Geping Lia,b,*(), Gaihuan Yuand
Revised:
2021-05-05
Published:
2022-01-30
Online:
2022-01-25
Contact:
Geping Li
About author:
*School of Materials Science and Engineering, University of Science and Technology of China, 96 JinZhai Road, Baohe District, Hefei 230026, China. E-mail address: gpli@imr.ac.cn (G. Li)Fusen Yuan, Fuzhou Han, Yingdong Zhang, Ali Muhammad, Wenbin Guo, Jie Ren, Chengze Liu, Hengfei Gu, Geping Li, Gaihuan Yuan. Intermediate state of hexagonal close-packed structure to face-centered cubic structure transformation: Direct evidence for basal-type face-centered cubic phase via partial dislocation in zirconium[J]. J. Mater. Sci. Technol., 2022, 98: 44-50.
Fig. 1. (a) Optical microstructure of the as-solidified ingot. (b) BF-STEM image of the as-solidified ingot. The lamellae were indicated by green arrows. (c) Magnified BF-STEM image of the region c in b. (d) BF-TEM image corresponding to region d in c. (e) SAED patterns of the region containing α matrix, lamellae 1 and 2 showing twinning and B-type OR. The FFT patterns of lamellae 1-6 were shown at the bottom of this figure.
Fig. 2. (a) HRTEM image of an area with lamellae 3 and 4 viewed along [2$\bar{1}$$\bar{1}$0]HCP and[$\bar{1}$10]FCC direction. (b-e) Enlarged HRTEM images of the region b-e in b, respectively, showing corresponding stacking sequences.
Fig. 3. (a) Standard simulation diffraction patterns viewed along [2$\bar{1}$$\bar{1}$0] direction of HCP structure. (b) FFT patterns corresponding to lamella 4. (c) Atomic model of HCP and S1 structures viewed along [2$\bar{1}$$\bar{1}$0] direction. The left side for the HCP and the right side for the S1.
Fig. 4. (a), (b) and (c) Stacking sequences of HCP, S1 and FCC structures viewed along [2$\bar{1}$$\bar{1}$0]HCP direction, correspondingly. (d) Schematic illustration of HCP→ S1 →FCC phase transformation. Dashed lines represent slip planes; Blue arrows indicate slip direction; HCP, S1 and FCC are marked by blue, red and black boxes, respectively.
[1] |
A.T. Motta, A. Couet, R.J. Comstock, Annu. Rev. Mater. Res. 45 (2015) 311-343.
DOI URL |
[2] |
F. Yuan, G. Li, F. Han, Y. Zhang, A. Muhammad, W. Guo, H. Gu, Mater. Sci. Eng. A 774 (2020) 138914.
DOI URL |
[3] |
X. Chen, Q. Zeng, W. He, Q. Liu, Mater. Sci. Eng. A 767 (2019) 138444.
DOI URL |
[4] |
H. Zhao, X. Hu, M. Song, S. Ni, Scr. Mater. 132 (2017) 63-67.
DOI URL |
[5] |
C. Liu, G. Li, H. Gu, F. Yuan, F. Han, M. Ali, Y. Zhang, W. Guo, Mater. Lett. 267 (2020) 127551.
DOI URL |
[6] |
F. Yuan, G. Li, F. Han, Y. Zhang, A. Muhammad, W. Guo, J. Ren, C. Liu, H. Gu, J. Mater. Sci. 56 (3) (2021) 2631-2637.
DOI URL |
[7] |
X. An, K. An, H. Zhang, X. Ou, S. Ni, M. Song, J. Mater. Sci. 56 (3) (2021) 2672-2683.
DOI URL |
[8] |
Q. Yu, J. Kacher, C. Gammer, R. Traylor, A. Samanta, Z. Yang, A.M. Minor, Scr. Mater. 140 (2017) 9-12.
DOI URL |
[9] |
C. Chen, S. Qian, S. Wang, L. Niu, R. Liu, B. Liao, Z. Zhong, P. Lu, P. Li, L. Cao, Y. Wu, Mater. Charact. 136 (2018) 257-263.
DOI URL |
[10] |
H.C. Wu, A. Kumar, J. Wang, X.F. Bi, C.N. Tomé, Z. Zhang, S.X. Mao, Sci. Rep. 6 (1) (2016) 24370.
DOI URL |
[11] |
J.X. Yang, H.L. Zhao, H.R. Gong, M. Song, Q.Q. Ren, Sci. Rep. 8 (1) (2018) 1992.
DOI PMID |
[12] |
B. Wei, S. Ni, Y. Liu, X. Liao, M. Song. J. Mater. Sci. Technol. 49 (2020) 211-223.
DOI URL |
[13] |
B. Wei, S. Ni, Y. Liu, M. Song, Scr. Mater. 169 (2019) 46-51.
DOI URL |
[14] |
J.B. Jeon, G. Dehm, Scr. Mater. 102 (2015) 71-74.
DOI URL |
[15] |
J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Acta Mater. 58 (6) (2010) 2262-2270.
DOI URL |
[16] |
X. Ma, X. Guo, M. Fu, Y. Qiao, Mater. Charact. 142 (2018) 332-339.
DOI URL |
[17] |
H. Zhao, M. Song, S. Ni, S. Shao, J. Wang, X. Liao, Acta Mater. 131 (2017) 271-279.
DOI URL |
[18] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou. J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[19] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (4) (2016) 2404-2415.
DOI URL |
[20] |
Y. Pang, Q. Li, Int. J. Hydrog. Energy 41 (40) (2016) 18072-18087.
DOI URL |
[21] |
Y. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[22] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[1] | Conghui Zhang, Xiangkang Zeng, Jiapeng Cheng, Yaomian Wang. Fatigue life improvement and grain growth of gradient nanostructured industrial zirconium during high cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 87(0): 101-107. |
[2] | Fusen Yuan, Geping Li, Fuzhou Han, Yingdong Zhang, Ali Muhammad, Wenbin Guo, Jie Ren, Chengze Liu, Hengfei Gu, Gaihuan Yuan. A new type face-centered cubic zirconium phase in pure zirconium [J]. J. Mater. Sci. Technol., 2021, 81(0): 236-239. |
[3] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
[4] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
[5] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[6] | Jo Min Chul, Jisung Yoo, Jo Min Cheol, Alireza Zargaran, Sohn Seok Su, Kim Nack J., Sunghak Lee. Effects of Cu addition on formability and surface delamination phenomenon in high-strength high-Mn steels [J]. J. Mater. Sci. Technol., 2020, 43(0): 44-51. |
[7] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[8] | Zahra Amirsardari, Rouhollah Mehdinavaz-Aghdam, Masoud Salavati-Niasari, Mohammad Reza Jahannama. Influence of ZrB2 Nanoparticles on the Mechanical and Thermal Behaviors of Carbon Nanotube Reinforced Resol Composite [J]. J. Mater. Sci. Technol., 2016, 32(7): 611-616. |
[9] | Ruben Kotoka, Sergey Yarmolenko, Devdas Pai, Jag Sankar. Corrosion Behavior of Reactive Sputtered Al2O3 and ZrO2 Thin Films on Mg Disk Immersed in Saline Solution [J]. J. Mater. Sci. Technol., 2015, 31(9): 873-880. |
[10] | Yuxi Wu, Wanglin Zhang, Jia Guo, Jieshan Hou, Xiuyan Li, Renzhong Huang, Xiufang Ma, Qianfeng Zhang. The First-principles Study on the Occupation Behavior and the Ductility Mechanism of Zr in Ni–Ni3Al System with Lattice Misfit [J]. J. Mater. Sci. Technol., 2014, 30(5): 517-522. |
[11] | Cheng-Han Lee, Ren-Kae Shiue. Infrared Brazing Zirconium using Two Silver Based Foils [J]. J. Mater. Sci. Technol., 2013, 29(3): 283-286. |
[12] | B.X. Zhou, M.Y. Yao, Z.K. Li, X.M. Wang, J. Zhou, C.S. Long, Q. Liu. Optimization of N18 Zirconium Alloy for Fuel Cladding of Water Reactors [J]. J Mater Sci Technol, 2012, 28(7): 606-613. |
[13] | Dawu Xiao Yinglei Li Shisheng Hu Lingcang Cai. High Strain Rate Deformation Behavior of Zirconium at Elevated Temperatures [J]. J Mater Sci Technol, 2010, 26(10): 878-882. |
[14] | Yong SHEN, Evan MA, Jian XU. A Group of Cu(Zr)-based BMGs with Critical Diameter in the Range of 12 to 18 mm [J]. J Mater Sci Technol, 2008, 24(02): 149-152. |
[15] | Wattanachai Prukkanon, Satit Chanpum, Chaowalit Limmaneevichitr. Effect of Sc on Precipitation Hardening of AlSi6Mg Alloy [J]. J Mater Sci Technol, 2008, 24(01): 17-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||