J. Mater. Sci. Technol. ›› 2021, Vol. 84: 86-96.DOI: 10.1016/j.jmst.2020.12.022
• Research Article • Previous Articles Next Articles
Hongpeng Zhenga, Li Liua,*(), Fandi Menga, Yu Cuib, Zhong Lia, Emeka E. Oguziec, Fuhui Wanga
Received:
2020-09-07
Revised:
2020-11-07
Accepted:
2020-12-01
Published:
2021-09-10
Online:
2021-01-24
Contact:
Li Liu
About author:
* E-mail address: liuli@mail.neu.edu.cn (L. Liu).Hongpeng Zheng, Li Liu, Fandi Meng, Yu Cui, Zhong Li, Emeka E. Oguzie, Fuhui Wang. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. J. Mater. Sci. Technol., 2021, 84: 86-96.
Scheme 1. Schematic illustration of the fabrication of etched basalt scales by reaction 1 and the fabrication of FEB scales by reaction 2 and reaction 3.
Fig. 1. (a) Schematic illustration for preparation of the superhydrophobic fluorinated etched basalt/fluorocarbon (FEB/FC) coating. SEM images of (b1) basalt scales, (c1) FEB scales and (d) FEB/FC coating. AFM morphologies and surface roughness of (b2) basalt scale and (c2) FEB scale. (e) Snapshots of different droplets on superhydrophobic FEB/FC coating.
Fig. 2. Contact angles of water droplets (3 μL) on fluorocarbon (FC), basalt fluorocarbon (B/FC), etched basalt/fluorocarbon (EB/FC), fluorinated basalt/fluorocarbon (FB/FC) and fluorinated etched basalt/fluorocarbon (FEB/FC) coatings.
Fig. 3. SEM images of (a) FB scale and (b) FEB scale with elements mapping distribution. (c) FT-IR spectra of basalt, etched basalt (EB) and fluorinated etched basalt (FEB) scales, KH550 and PFPE-ME. (d) XRD patterns of basalt, EB and FEB scales.
Fig. 4. (a) Contact angles of water droplets (3 μL) on the fluorinated etched basalt/fluorocarbon (FEB/FC) composite coatings as a function of UV irradiation time, with frames taken by a high-speed camera, showing the rolling angle of the water droplets (10 μL) on the FEB/FC coating at different UV irradiation times. (b) Schematic diagram of FEB/FC coating showing UV resistance.
Fig. 5. Impedance plots of basalt/fluorocarbon (B/FC), etched basalt/fluorocarbon (EB/FC), fluorinated basalt/fluorocarbon (FB/FC) and fluorinated etched basalt/fluorocarbon (FEB/FC) coatings after immersed in 3.5 wt.% NaCl solution for (a1, a2) 1 day, (b1, b2) 7 days and (c1, c2) 21 days.
Coatings | Time (day) | Qc (10-9 Fcm-2) | nc | Rc (109 Ωcm2) | Qdl (10-9 Fcm-2) | ndl | Rt (109 Ωcm2) |
---|---|---|---|---|---|---|---|
B/FC | 1 | 0.49 ± 0.11 | 0.98 ± 0.01 | 8.01 ± 1.91 | 0.96 ± 0.11 | 0.78 ± 0.02 | 1.31 ± 0.45 |
7 | 1.76 ± 0.51 | 0.97 ± 0.01 | 0.19 ± 0.04 | 1.87 ± 0.09 | 0.74 ± 0.01 | 0.08 ± 0.01 | |
21 | 1.94 ± 0.36 | 0.96 ± 0.02 | 0.08 ± 0.02 | 3.73 ± 0.92 | 0.77 ± 0.02 | 0.05 ± 0.01 | |
EB/FC | 1 | 0.39 ± 0.12 | 0.97 ± 0.01 | 9.29 ± 2.37 | 0.83 ± 0.16 | 0.78 ± 0.02 | 2.01 ± 0.89 |
7 | 0.89 ± 0.12 | 0.97 ± 0.01 | 2.09 ± 0.61 | 1.01 ± 0.15 | 0.78 ± 0.02 | 0.95 ± 0.06 | |
21 | 0.91 ± 0.14 | 0.97 ± 0.02 | 0.22 ± 0.07 | 2.12 ± 0.91 | 0.71 ± 0.01 | 0.27 ± 0.09 | |
FB/FC | 1 | 0.29 ± 0.08 | 0.95 ± 0.01 | 11.29 ± 6.04 | 0.62 ± 0.13 | 0.78 ± 0.02 | 2.05 ± 0.99 |
7 | 0.41 ± 0.09 | 0.96 ± 0.03 | 4.26 ± 0.81 | 0.84 ± 0.01 | 0.88 ± 0.03 | 1.31 ± 0.63 | |
21 | 0.54 ± 0.08 | 0.94 ± 0.01 | 3.59 ± 0.11 | 1.33 ± 0.31 | 0.87 ± 0.02 | 0.98 ± 0.19 | |
FEB/FC | 1 | 0.22 ± 0.01 | 0.95 ± 0.01 | 18.51 ± 5.86 | - | - | - |
7 | 0.35 ± 0.01 | 0.95 ± 0.03 | 6.26 ± 0.91 | 0.61 ± 0.01 | 0.89 ± 0.02 | 3.31 ± 0.51 | |
21 | 0.41 ± 0.01 | 0.94 ± 0.01 | 4.57 ± 0.21 | 1.02 ± 0.31 | 0.87 ± 0.02 | 1.97 ± 0.16 |
Table 1 The electrochemical parameters extracted from EIS data of the four coatings immersed in 3.5 wt.% NaCl solution for 1, 7, and 21 days; the data are normalized to the total surface area (1 cm2); the values are the mean of three replicates and (±) corresponds to the standard deviations.
Coatings | Time (day) | Qc (10-9 Fcm-2) | nc | Rc (109 Ωcm2) | Qdl (10-9 Fcm-2) | ndl | Rt (109 Ωcm2) |
---|---|---|---|---|---|---|---|
B/FC | 1 | 0.49 ± 0.11 | 0.98 ± 0.01 | 8.01 ± 1.91 | 0.96 ± 0.11 | 0.78 ± 0.02 | 1.31 ± 0.45 |
7 | 1.76 ± 0.51 | 0.97 ± 0.01 | 0.19 ± 0.04 | 1.87 ± 0.09 | 0.74 ± 0.01 | 0.08 ± 0.01 | |
21 | 1.94 ± 0.36 | 0.96 ± 0.02 | 0.08 ± 0.02 | 3.73 ± 0.92 | 0.77 ± 0.02 | 0.05 ± 0.01 | |
EB/FC | 1 | 0.39 ± 0.12 | 0.97 ± 0.01 | 9.29 ± 2.37 | 0.83 ± 0.16 | 0.78 ± 0.02 | 2.01 ± 0.89 |
7 | 0.89 ± 0.12 | 0.97 ± 0.01 | 2.09 ± 0.61 | 1.01 ± 0.15 | 0.78 ± 0.02 | 0.95 ± 0.06 | |
21 | 0.91 ± 0.14 | 0.97 ± 0.02 | 0.22 ± 0.07 | 2.12 ± 0.91 | 0.71 ± 0.01 | 0.27 ± 0.09 | |
FB/FC | 1 | 0.29 ± 0.08 | 0.95 ± 0.01 | 11.29 ± 6.04 | 0.62 ± 0.13 | 0.78 ± 0.02 | 2.05 ± 0.99 |
7 | 0.41 ± 0.09 | 0.96 ± 0.03 | 4.26 ± 0.81 | 0.84 ± 0.01 | 0.88 ± 0.03 | 1.31 ± 0.63 | |
21 | 0.54 ± 0.08 | 0.94 ± 0.01 | 3.59 ± 0.11 | 1.33 ± 0.31 | 0.87 ± 0.02 | 0.98 ± 0.19 | |
FEB/FC | 1 | 0.22 ± 0.01 | 0.95 ± 0.01 | 18.51 ± 5.86 | - | - | - |
7 | 0.35 ± 0.01 | 0.95 ± 0.03 | 6.26 ± 0.91 | 0.61 ± 0.01 | 0.89 ± 0.02 | 3.31 ± 0.51 | |
21 | 0.41 ± 0.01 | 0.94 ± 0.01 | 4.57 ± 0.21 | 1.02 ± 0.31 | 0.87 ± 0.02 | 1.97 ± 0.16 |
Fig. 6. Visual observations of the B/FC, FB/FC, EB/FC and FEB/FC coatings after 0, 3, 24 and 48 h exposure to salt spray test condition (ASTM B117-2011: 5 wt.% NaCl solution with the pH of 6.5 ~ 7.2 and temperature in the chamber of 35 ± 2 ℃).
Fig. 7. (a) The schematic illustration of the sandpaper abrasion tests. (b) Contact angles of water droplets (3 μL) on the fluorinated etched basalt/fluorocarbon (FEB/FC) coating samples after 12 abrasion cycles. SEM images of the FEB/FC coating surfaces after (c) 0, (d) 8 and (e) 12 abrasion cycles.
Fig. 8. Fluorescence microscope images of (a1, a2, a3) basalt/fluorocarbon (B/FC), (b1, b2, b3) etched basalt/fluorocarbon (EB/FC), (c1, c2, c3) fluorinated basalt/fluorocarbon (FB/FC) and (d1, d2, d3) fluorinated etched basalt/fluorocarbon (FEB/FC) coatings exposed to P. aeruginosa inoculated media for 40 days. The “BT” and “BC” represent the biofilm thickness and biofilm coverage, respectively.
[1] | S. Pradhan, S. Kumar, S. Mohanty, S.K. Nayak, Polym.-Plast. Technol. Mater. 58 (2019) 498-518. |
[2] |
C. Xie, H. Guo, W. Zhao, L. Zhang, Langmuir 36 (2020) 2396-2402.
DOI URL |
[3] | X. Yong, Z. Chen, X. Ruan, R. Chen, Y. Fu, Q. Ma, Prog. Org. Coat. 136(2019). |
[4] | H. Zhang, Y. Dun, Y. Tang, Y. Zuo, X. Zhao, J. Appl. Polym. Sci. 133(2016). |
[5] |
K. Norrman, M.V. Madsen, S.A. Gevorgyan, F.C. Krebs, J. Am. Chem. Soc. 132 (2010) 16883-16892.
DOI PMID |
[6] |
X.F. Yang, C. Vang, D.E. Tallman, G.P. Bierwagen, S.G. Croll, S. Rohlik, Polym. Degrad. Stab. 74 (2001) 341-351.
DOI URL |
[7] | F. Geyer, M. D’Acunzi, Adv. Mater. 31(2019). |
[8] |
G.B. Hwang, K. Page, A. Patir, S.P. Nair, E. Allan, I.P. Parkin, ACS Nano 12 (2018) 6050-6058.
DOI URL |
[9] |
K. Sun, H. Yang, W. Xue, A. He, D. Zhu, W. Liu, K. Adeyemi, Y. Cao, Appl. Surf. Sci. 436 (2018) 263-267.
DOI URL |
[10] |
Y. Cheng, T. Zhu, S. Li, J. Huang, J. Mao, H. Yang, S. Gao, Z. Chen, Y. Lai, Chem. Eng. J. 355 (2019) 290-298.
DOI |
[11] |
Q. Li, H. Liu, S. Zhang, D. Zhang, X. Liu, Y. He, L. Mi, J. Zhang, C. Liu, C. Shen, Z. Guo, ACS Appl. Mater. Interfaces 11 (2019) 21904-21914.
DOI URL |
[12] | H. Dong, M. Cheng, Y. Zhang, H. Wei, F. Shi, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 5886-5891. |
[13] | D. Zang, R. Zhu, W. Zhang, X. Yu, L. Lin, X. Guo, M. Liu, L. Jiang, Adv. Funct. Mater. 27(2017). |
[14] |
Y. Liu, H. Gu, Y. Jia, J. Liu, H. Zhang, R. Wang, B. Zhang, H. Zhang, Q. Zhang, Chem. Eng. J. 356 (2019) 318-328.
DOI URL |
[15] |
S.M.R. Razavi, J. Oh, R.T. Haasch, K. Kim, M. Masoomi, R. Bagheri, J.M. Slauch, N. Miljkovic, ACS Sustainable Chem. Eng. 7 (2019) 14509-14520.
DOI URL |
[16] |
Y. Ye, Z. Liu, W. Liu, D. Zhang, H. Zhao, L. Wang, X. Li, Chem. Eng. J. 348 (2018) 940-951.
DOI URL |
[17] | J. Yan, J. Shi, P. Zhang, W. Tian, Y. Zhang, Z. Sun, Mater. Corros. 69 (2018) 1669-1675. |
[18] |
Y. Yu, Y.X. Zhang, Y. Chen, Z.J. Xu, Geochim. Cosmochim. Acta 179 (2016) 257-274.
DOI URL |
[19] | H. Liu, Y. Wang, J. Huang, Z. Chen, G. Chen, Y. Lai, Adv. Funct. Mater. 28(2018). |
[20] |
M. Qu, B. Zhang, S. Song, L. Chen, J. Zhang, X. Cao, Adv. Funct. Mater. 17 (2007) 593-596.
DOI URL |
[21] |
X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, J. Am. Chem. Soc. 126 (2004) 62-63.
DOI URL |
[22] |
Y. Qing, C. Yang, N. Yu, Y. Shang, Y. Sun, L. Wang, C. Liu, Chem. Eng. J. 290 (2016) 37-44.
DOI URL |
[23] |
J. Zhang, F. Chen, Y. Lu, Z. Zhang, J. Liu, Y. Chen, X. Liu, X. Yang, C.J. Carmalt, I.P. Parkin, J. Mater. Sci. 55 (2019) 498-508.
DOI URL |
[24] | D. Zhi, Y. Lu, S. Sathasivam, I.P. Parkin, X. Zhang, J. Mater. Chem. A Mater. Energy Sustain. 5 (2017) 10622-10631. |
[25] |
C.H. Yu, A. Al-Saadi, S.-J. Shih, L.Qiu, K.Y. Tam, S.C. Tsang, J. Phys. Chem. C. 113 (2009) 537-543.
DOI URL |
[26] |
C.H. Yu, N. Caiulo, C.C.H. Lo, K. Tam, S.C. Tsang, Adv. Mater. 18 (2006) 2312, -+.
DOI URL |
[27] |
M. Jouyandeh, O.M. Jazani, A.H. Navarchian, M. Shabanian, H. Vahabi, M.R. Saeb, Appl. Surf. Sci. 479 (2019) 1148-1160.
DOI |
[28] | F. Loeker, P.C. Marr, S.M. Howdle, Colloid Surf. A-Physicochem. Eng.Asp. 214 (2003) 143-150. |
[29] |
H. Shi, Y. He, Y. Pan, H.H. Di, G.Y. Zeng, L. Zhang, C.L. Zhang, J. Membr. Sci. 506 (2016) 60-70.
DOI URL |
[30] |
A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40 (1944) 546-551.
DOI URL |
[31] |
A.J. Milne, A. Amirfazli, Adv. Colloid Interface Sci. 170 (2012) 48-55.
DOI URL |
[32] |
E. Bormashenko, Adv. Colloid Interface Sci. 222 (2015) 92-103.
DOI URL |
[33] |
N. Wang, D. Xiong, M. Li, Y. Deng, Y. Shi, K. Wang, Appl. Surf. Sci. 355 (2015) 226-232.
DOI URL |
[34] | B.M. Hryniewicz, F. Wolfart, P. Gomez-Romero, E.S. Orth, M. Vidotti, Electrochim. Acta 338(2020). |
[35] | W. Guo, J. Hu, Y. Ma, H. Huang, S. Yin, J. Wei, Q. Yu, Corros. Sci. 165(2020). |
[36] |
H. Zheng, M. Guo, Y. Shao, Y. Wang, B. Liu, G. Meng, Corros. Sci. 139 (2018) 1-12.
DOI URL |
[37] |
S. Skale, V. Doleček, M. Slemnik, Corros. Sci. 49 (2007) 1045-1055.
DOI URL |
[38] |
K.V. Subramaniam, M. Bi, Corros. Sci. 51 (2009) 1976-1984.
DOI URL |
[39] |
E. Alibakhshi, A. Naeimi, M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, J. Alloys. Compd. 762 (2018) 730-744.
DOI URL |
[40] |
Y.T. Horng, T.C. Chang, J.W. Hsu, H.C. Shih, Surf. Coat. Technol. 168 (2003) 209-215.
DOI URL |
[41] | W.F. Adler, Wear 186 (1995) 35-44. |
[42] |
K. Holmberg, H. Ronkainen, A. Matthews, Ceram. Int. 26 (2000) 787-795.
DOI URL |
[43] |
K. Miyoshi, R.L.C. Wu, A. Garscadden, P.N. Barnes, H.E. Jackson, J. Appl. Phys. 74 (1993) 4446-4454.
DOI URL |
[44] |
Y.Y. Guu, J.F. Lin, C.F. Ai, Wear 194 (1996) 12-21.
DOI URL |
[45] |
I.P. Hayward, I.L. Singer, L.E. Seitzman, Wear 157 (1992) 215-227.
DOI URL |
[46] |
C. Fan, B. Li, M. Ren, P. Wu, Y. Liu, T. Chen, Z. Cheng, J. Qin, X. Liu, RSC Adv. 5 (2015) 18932-18938.
DOI URL |
[47] |
A.P. Kharitonov, G.V. Simbirtseva, A. Tressaud, E. Durand, C. Labrugère, M. Dubois, J. Fluorine Chem. 165 (2014) 49-60.
DOI URL |
[48] | Z. Zhu, Y. Xia, G. Niu, J. Liu, C. Wang, H. Jiang, Wear 376 (2017) 1314-1320. |
[49] |
K. Chen, S. Zhou, L. Wu, Chem. Commun. (Camb.) 50 (2014) 11891-11894.
DOI URL |
[50] |
A. Milionis, R. Ruffilli, I.S. Bayer, RSC Adv. 4 (2014) 34395-34404.
DOI URL |
[51] | M. Tenjimbayashi, S. Shiratori, J. Appl. Phys. 116 (2014) 7. |
[52] |
Y. Wang, X. Liu, H. Zhang, Z. Zhou, RSC Adv. 5 (2015) 18909-18914.
DOI URL |
[53] |
Y.Y. Zhang, Q. Ge, L.L. Yang, X.J. Shi, J.J. Li, D.Q. Yang, E. Sacher, Appl. Surf. Sci. 339 (2015) 151-157.
DOI URL |
[54] |
S.F. Chen, L.Y. Li, C.L. Boozer, S.Y. Jiang, Langmuir 16 (2000) 9287-9293.
DOI URL |
[55] |
S. Herrwerth, W. Eck, S. Reinhardt, M. Grunze, J. Am. Chem. Soc. 125 (2003) 9359-9366.
PMID |
[56] |
S. Chen, L. Li, C. Zhao, J. Zheng, Polymer 51 (2010) 5283-5293.
DOI URL |
[57] |
A.M. Emelyanenko, I.S. Pytskii, V.V. Kaminsky, E.V. Chulkova, A.G. Domantovsky, K.A. Emelyanenko, V.D. Sobolev, A.V. Aleshkin, L.B. Boinovich, Colloids Surf. B Biointerfaces 185 (2020), 110622.
DOI URL |
[58] |
M.S. Khalil-Abad, M.E. Yazdanshenas, J. Colloid Interface Sci. 351 (2010) 293-298.
DOI URL |
[59] |
C.-H. Xue, J. Chen, W. Yin, S.-T. Jia, J.-Z. Ma, Appl. Surf. Sci. 258 (2012) 2468-2472.
DOI URL |
[60] |
L. Rizzello, B. Sorce, S. Sabella, G. Vecchio, A. Galeone, V. Brunetti, R. Cingolani, P.P. Pompa, ACS Nano 5 (2011) 1865-1876.
DOI PMID |
[61] |
K.K. Jefferson, FEMS Microbiol. Lett. 236 (2004) 163-173.
PMID |
[62] |
D.G. Thanassi, S.J. Hultgren, Curr. Opin. Cell Biol. 12 (2000) 420-430.
PMID |
[63] |
M. Zhang, P. Wang, H. Sun, Z. Wang, ACS Appl. Mater. Interfaces 6 (2014) 22108-22115.
DOI URL |
[1] | E. Vazirinasab, G. Momen, R. Jafari. A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite [J]. J. Mater. Sci. Technol., 2021, 66(0): 213-225. |
[2] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
[3] | Binbin Zhang, Jizhou Duan, Yanliang Huang, Baorong Hou. Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness [J]. J. Mater. Sci. Technol., 2021, 71(0): 1-11. |
[4] | Jingwei Xu, Xiaju Cheng, Fuxian Chen, Weijie Li, Xiaohui Xiao, Puxiang Lai, Guopeng Xu, Li Xu, Yue Pan. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy [J]. J. Mater. Sci. Technol., 2021, 63(0): 97-105. |
[5] | D.L. Gong, H.L. Wang, E.G. Obbard, R. Yang, Y.L. Hao. Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 234-243. |
[6] | Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane [J]. J. Mater. Sci. Technol., 2020, 45(0): 70-83. |
[7] | Wenhui Yao, Liang Wu, Guangsheng Huang, Bin Jiang, Andrej Atrens, Fusheng Pan. Superhydrophobic coatings for corrosion protection of magnesium alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 100-118. |
[8] | Xiao You, Jinshan Yang, Mengmeng Wang, Hongda Wang, Le Gao, Shaoming Dong. Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity [J]. J. Mater. Sci. Technol., 2020, 58(0): 16-23. |
[9] | Haifeng Chen, Yizhou Shen, Zhaoru He, Zhengwei Wu, Xinyu Xie. Facilely fabricating superhydrophobic coated-mesh materials for effective oil-water separation: Effect of mesh size towards various organic liquids [J]. J. Mater. Sci. Technol., 2020, 51(0): 151-160. |
[10] | Jiajia Qiu, Yudong Shang, Xiuhua Chen, Shaoyuan Li, Wenhui Ma, Xiaohan Wan, Jia Yang, Yun Lei, Zhengjie Chen. Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation [J]. J. Mater. Sci. Technol., 2018, 34(11): 2197-2204. |
[11] | Cui Lan-Yue, Liu Han-Peng, Zhang Wen-Le, Han Zhuang-Zhuang, Deng Mei-Xu, Zeng Rong-Chang, Li Shuo-Qi, Wang Zhen-Lin. Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy [J]. J. Mater. Sci. Technol., 2017, 33(11): 1263-1271. |
[12] | Fen Zhang, Changlei Zhang, Liang Song, Rongchang Zeng, Shuoqi Li, Hongzhi Cui. Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance [J]. J. Mater. Sci. Technol., 2015, 31(11): 1139-1143. |
[13] | Y.P. Li, M.K. Lei. Nanotexturing and Wettability Ageing of Polypropylene Surfaces Modified by Oxygen Capacitively Coupled Radio Frequency Plasma [J]. J. Mater. Sci. Technol., 2014, 30(10): 965-972. |
[14] | Lihuan Wang, Huihui Shao, Xiaobo Hu, Xiangang Xu. Hierarchical Porous Patterns of n-type 6H-SiC Crystalsvia Photo-electrochemical Etching [J]. J. Mater. Sci. Technol., 2013, 29(7): 655-661. |
[15] | Hani J. Kbashi. Fabrication of Submicron-Diameter and Taper Fibers Using Chemical Etching [J]. J Mater Sci Technol, 2012, 28(4): 308-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||