J. Mater. Sci. Technol. ›› 2021, Vol. 79: 75-87.DOI: 10.1016/j.jmst.2020.11.043
• Research Article • Previous Articles Next Articles
Kexing Songa,b,c,*(), Yongfeng Genga, Yijie Bana, Yi Zhanga,b,c,*(
), Zhou Lid, Xujun Mie, Jun Caof, Yanjun Zhoua,b,c, Xuebin Zhanga,b,c
Received:
2020-08-25
Revised:
2020-10-12
Accepted:
2020-11-04
Published:
2020-12-09
Online:
2020-12-09
Contact:
Kexing Song,Yi Zhang
About author:
yizhang@haust.edu.cn(Y. Zhang).1These authors contributed equally to this work.
Kexing Song, Yongfeng Geng, Yijie Ban, Yi Zhang, Zhou Li, Xujun Mi, Jun Cao, Yanjun Zhou, Xuebin Zhang. Effects of strain rates on dynamic deformation behavior of Cu-20Ag alloy[J]. J. Mater. Sci. Technol., 2021, 79: 75-87.
Alloy | Conductivity (%IACS) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Cu-2Ag (φ7.821) | 93.8 | 205 | 38 |
Cu-4Ag (φ7.821) | 88.5 | 236 | 35 |
Cu-20Ag φ7.867) | 80.3 | 263 | 47 |
Table 1 Electrical conductivity and mechanical properties of as cast Cu-Ag alloys.
Alloy | Conductivity (%IACS) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Cu-2Ag (φ7.821) | 93.8 | 205 | 38 |
Cu-4Ag (φ7.821) | 88.5 | 236 | 35 |
Cu-20Ag φ7.867) | 80.3 | 263 | 47 |
Alloy | Conductivity (%IACS) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Cu-2Ag (φ5.43) | 90.39 | 349 | 5.842 |
Cu-4Ag (φ5.43) | 84.6 | 382 | 6.262 |
Cu-20Ag (φ5.43) | 76.74 | 457 | 6.842 |
Table 2 Electrical conductivity and mechanical properties of as cast Cu-Ag alloys after many times of drawing.
Alloy | Conductivity (%IACS) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Cu-2Ag (φ5.43) | 90.39 | 349 | 5.842 |
Cu-4Ag (φ5.43) | 84.6 | 382 | 6.262 |
Cu-20Ag (φ5.43) | 76.74 | 457 | 6.842 |
Fig. 4. True stress-true strain curve and yield strength (with error bars) of Cu-20Ag alloy with different strain rates under the high speed hydraulic servo material testing machine and SHPB.
Fig. 7. TEM micrographs of Cu-20Ag alloy after multi pass drawing and annealing: (a-b) bright fields that reveal the deformation bands and seldom twins; (c) FFT of twins in (b); (d) HRTEM twins; (e) HRTEM of Cu-Ag interface; (f) FFT of the interface in (e); (g) crystal plane spacing of Cu and Ag.
Fig. 9. TEM micrographs of Cu-20Ag alloy deformed at 500 s-1: (a), (c) bright field images; (b) EDS analysis of (a); (d) magnification images of (c); (e) FFT of yellow hexagon in (d); (f) FFT of blue pentagram.
Fig. 10. TEM micrographs of Cu-20Ag alloy deformed at 3000 s-1: (a-d) bright field images; (e) magnification images of (d); (f) FFT of blue rectangle in (e); (g) EDS analysis of (c).
Fig. 11. TEM micrographs of Cu-20Ag alloy deformed at 3000 s-1: (a-b) deformed twins given by bright field and HRTEM; (c-d) bright filed and dark field that revealing the distribution of Ag in the matrix; (e) the percent of Cu and Ag in 1 and 2 regions, respectively; (f) FFT of (c); (g-f) the bright field and HRTEM of Cu-Ag interfaces; (j) FFT of Cu-Ag interface in (h).
Fig. 12. The strain distributions with three different directions of Cu-20Ag alloy at different states: (a) Cu matrix at original state; (b) Cu matrix deformed at 3000 s-1; (c) Ag deformed at 3000 s-1.
Fig. 13. Lattice image of the Cu and Ag in the as-recieved specimen (a-d) HRTEM image; (a1-a3) (111)F, ${{(1\bar{1}\bar{1})}_{F}}$ and (200)F; (b1-b3) (111)F, ${{(\bar{2}00)}_{F}}$ and ${{(\bar{1}11)}_{F}}$ ; (c1-c3) (111)F, ${{(\bar{2}00)}_{F}}$ and ${{(\bar{1}11)}_{F}}$ and (d1-d3) (111)F, ${{(\bar{2}00)}_{F}}$ and ${{(\bar{1}11)}_{F}}$ lattice fringes obtained by filtering.
[1] |
Y.F. Geng, X. Li, H.L. Zhou, Y. Zhang, Y.L. Jia, B.H. Tian, Y. Liu, Alex A. Volinsky, X.H. Zhang, K.X. Song, G.X. Wang, L.H. Li, J.R. Hou, J. Alloys Compd. 821 (2020), 153518.
DOI URL |
[2] |
Y.F. Geng, X. Li, Y. Zhang, Y.L. Jia, H.L. Zhou, B.H. Tian, Y. Liu, Alex A. Volinsky, X.H. Zhang, K.X. Song, P. Liu, X.H. Chen, Vacuum 177 (2020), 109376.
DOI URL |
[3] |
Y.F. Geng, Y. Zhang, K.X. Song, Y.L. Jia, X. Li, H. Stock, H.L. Zhou, B.H. Tian, Y. Liu, Alex A. Volinsky, X.H. Zhang, P. Liu, X.H. Chen, J. Alloys Compd. 842 (2020), 155666.
DOI URL |
[4] |
B.J. Wang, Y. Zhang, B.H. Tian, Y.L. Jia, Alex A. Volinsky, V. Yakubovd, Y. Liu, K.X. Song, M. Fu, J. Mater. Res. Technol. 9 (2020) 6352-6359.
DOI URL |
[5] |
X.H. Zhang, Y. Zhang, B.H. Tian, K.X. Song, P. Liu, Y.L. Jia, X.H. Chen, J.C. An, Z. Zhao, Y. Liu, A.A. Volinsky, X. Li, T. Yin, Nanotechnol. Rev. 8 (2019) 383-395.
DOI URL |
[6] |
S. Osovski, D. Rittel, P. Landau, Scr. Mater. 66 (2012) 9-12.
DOI URL |
[7] |
M.F. Omar, H.M. Akil, Z.A. Ahmad, A. A.M.Mazuki, T. Yokoyama, Mater. Des. 31 (2010) 4209-4218.
DOI URL |
[8] |
M.A. Chen, H.Z. Li, X.Q. Li, C.M. Liu, Mater. Sci. Eng. A 452-453 (2007) 454-461.
DOI URL |
[9] |
L. Tang, Z. Chena, C. Zhan, X. Yang, C. Liu, H. Cai, Mater. Charact. 64 (2012) 21-26.
DOI URL |
[10] |
S. Boakye-Yiadom, A.K. Khan, N. Bassim, Metall. Mater. Trans. A 45 (2014) 5379-5396.
DOI URL |
[11] |
L.E. Murr, E.A. Trillo, S. Pappu, C. Kennedy, J. Mater. Sci. 37 (2002) 3337-3360.
DOI URL |
[12] |
D. Rittel, G. Ravichandran, A. Venkert, Mater. Sci. Eng. A 432 (2006) 191-201.
DOI URL |
[13] |
J.A. Hines, K.S. Vecchio, Acta Mater. 45 (1997) 635-649.
DOI URL |
[14] |
J.F.C. Lins, H.R.Z. Sandim, H.-J. Kestenbach, D. Raabe, K.S. Vecchio, Mater. Sci. Eng. A 457 (2007) 205-218.
DOI URL |
[15] | D. Rittel, Appl. Phys. 42 (2009) 1-6. |
[16] |
A. Mishra, M. Martin, N.N. Thadhani, B. Kad, M.A. Meyers, Acta Mater. 56 (2008) 2770-2783.
DOI URL |
[17] |
L.E. Murr, A.C. Ramirez, S.M. Gaytan, E.Y. Martinez, D.H. Hernandez, E. Martinez, Mater. Sci. Eng. A 516 (2009) 205-216.
DOI URL |
[18] |
D.K. Yang, Y. An, P. Cizek, Mater. Sci. Eng. A 528 (2011) 3990-3997.
DOI URL |
[19] |
A.A. Tiamiyu, Ritwik Basu, A.G. Odeshi, Jerzy A. Szpunar, Mater. Sci. Eng. A 636 (2015) 379-388.
DOI URL |
[20] |
D. Li, Y. Yang, T. Xu, Mater. Sci. Eng. A 527 (2010) 3529-3535.
DOI URL |
[21] |
P. Zhang, Y. Wang, Y. Xie, Vacuum 157 (2018) 306-311.
DOI URL |
[22] |
M.A. Khan, Y. Wang, H. Cheng, Vacuum 159 (2019) 482-493.
DOI URL |
[23] |
H. Paul, J. Driver, Z. Jasieński, Acta Mater. 50 (2002) 815-830.
DOI URL |
[24] |
A. Hodge, T. Furnish, A. Navid, Scr. Mater. 65 (2011) 1006-1009.
DOI URL |
[25] |
B. Wang, Z. Liu, B. Wang, Mater. Sci. Eng. A 611 (2014) 100-107.
DOI URL |
[26] |
B. Wang, Z. Liu, X. Wang, Mater. Sci. Eng. A 610 (2014) 301-308.
DOI URL |
[27] |
Y. Yang, F. Jiang, B. Zhou, Mater. Sci. Eng. A 528 (2011) 2787-2794.
DOI URL |
[28] |
I. Mendoza, D. Villalobos, B. Alexandrov, Mater. Sci. Eng. A 645 (2015) 306-310.
DOI URL |
[29] |
R.K. Wang, H. Zhang, L. Tang, J.B. Shao, Z. Xiao, Z.Y. Chen, C.M. Liu, J.G. Tang, Mater. Sci. Eng. A 754 (2019) 330-338.
DOI URL |
[30] | B. Zhang, J.T. Jiang, L. Liu, G.A. Li, W.Z. Shao, L. Zhen, Vacuum 169 (2019), 108868. |
[31] |
B.Y. Solomon, N. Bassim, Mater. Sci. Eng. A 711 (2018) 182-194.
DOI URL |
[32] |
M.N. Bassim, J. Mater. Process. Technol. 119 (2001) 234-236.
DOI URL |
[33] |
M.A. Khan, Y.W. Wang, G. Yasin, F. Nazeer, A. Malik, T. Ahmad, W.Q. Khan, T.A. Nguyen, H. Zhang, M.A. Afifi, J. Mater. Res. Technol. 9 (2020) 3977-3983.
DOI URL |
[34] |
Y. Zhou, Q.B. Fan, X. Liu, D.D. Wang, X.J. Zhu, K. Chen, J. Mater. Sci. Technol. 59 (2020) 138-148.
DOI URL |
[35] |
M.C. Jo, S. Kim, D.W. Suh, S.S. Hong, H.K. Kim, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 792 (2020), 139818.
DOI URL |
[36] |
M.C. Jo, S. Kim, D.W. Kim, H.K. Park, S.S. Hong, H.K. Kim, H.S. Kim, S.S. Sohn, S. Lee, J. Alloys Compd. 845 (2020), 155540.
DOI URL |
[37] |
S.L. Liu, Y.Z. Guo, Z.L. Pan, X.Z. Liao, E.J. Lavernia, Y.T. Zhu, Q.M. Wei, Y.H. Zhao, J. Mater. Sci. Technol. 54 (2020) 31-39.
DOI URL |
[38] |
Y. Yang, S.J. Yang, L.H. Jiang, Mater. Charact. 156 (2019), 109840.
DOI URL |
[39] |
L.H. Jiang, Y. Yang, Z. Wang, H.B. Hu, Mater. Sci. Eng. A 711 (2018) 317-324.
DOI URL |
[40] |
S. Boakye-Yiadom, A.K. Khan, N. Bassim, Mater. Sci. Eng. A 605 (2014) 270-285.
DOI URL |
[41] |
X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464 (2010) 877-880.
DOI URL |
[1] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
[2] | Guang Yang, Shang-Yi Ma, Kui Du, Dong-Sheng Xu, Sen Chen, Yang Qi, Heng-Qiang Ye. Interactions between dislocations and twins in deformed titanium aluminide crystals [J]. J. Mater. Sci. Technol., 2019, 35(3): 402-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||