J. Mater. Sci. Technol. ›› 2021, Vol. 79: 62-74.DOI: 10.1016/j.jmst.2020.11.038
• Research Article • Previous Articles Next Articles
Jiajia Tiana,*(), Kangwei Xub, Junhua Hua, Shijie Zhangc, Guoqin Caoa, Guosheng Shaoa,*(
)
Received:
2020-09-07
Revised:
2020-11-10
Accepted:
2020-11-11
Published:
2020-12-09
Online:
2020-12-09
Contact:
Jiajia Tian,Guosheng Shao
About author:
gsshao@zzu.edu.cn (G. Shao).Jiajia Tian, Kangwei Xu, Junhua Hu, Shijie Zhang, Guoqin Cao, Guosheng Shao. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design[J]. J. Mater. Sci. Technol., 2021, 79: 62-74.
Fig. 1. (a) Cross-sectional microstructure of the Cu-Ti composite coating. (b) Higher magnification image showing the Cu and Ti laminates. (c) EDS linear scan result across Cu/Ti/Cu laminates taking from the area as marked with L1 in (b). (d) XRD patterns of the Cu-Ti coating and the raw Cu and Ti powder.
Fig. 2. SKPFM result of the Cu-Ti composite coating: (a) topography map; (b) Volta potential map; and (c) line-profile result of the relative Volta potential along the L1 marked in (b).
Fig. 3. Release profile of Cu ions as a function of immersion period for Cu-Ti composite coating: (a) release rate of Cu ions and (b) cumulative Cu release.
Fig. 4. Antifouling performance of different samples. Digital photos of E. coli colonies Petri dish after incubated in E. coli-containing media for 8 h for: (a) blank control sample; (b) bare TC4 substrate; and (c) Cu-Ti composite coating. (d) The antibacterial coefficient results for different samples. The adherence behavior of Bacillus sp. bacteria on (e) TC4 substrate and (f) Cu-Ti coating after incubated in Bacillus sp. bacteria-containing media for 48 h.
Fig. 5. The surface morphology and the corresponding EDS mapping results of Cu-Ti coating after being immersed in artificial seawater for different periods: (a), (c) and (e) surface morphology images taken at lower magnification; (b), (d) and (f) surface morphology images taken at higher magnification.
Fig. 6. The cross-sectional microstructure of the Cu-Ti coating after being immersed into artificial seawater for different periods: (a) 7 days; (b) 30 days; and (c-f) 240 days. (d) A higher magnification image of the top region in (c). (e) A higher magnification image of the dissolving Cu region in (d). (f) Ti laminates left after Cu laminates dissolved.
Materials | H (GPa) | E (GPa) | H/E | H3/E2 (GPa) |
---|---|---|---|---|
CO-SPC coating | 0.04 | 2.7 | 0.015 | 8.8 × 10 -6 |
Cu-Ti coating | 3.1 | 125.8 | 0.024 | 1.8 × 10 -3 |
Table 1 Mechanical properties of the Cu-Ti coating and the CO-SPC coating.
Materials | H (GPa) | E (GPa) | H/E | H3/E2 (GPa) |
---|---|---|---|---|
CO-SPC coating | 0.04 | 2.7 | 0.015 | 8.8 × 10 -6 |
Cu-Ti coating | 3.1 | 125.8 | 0.024 | 1.8 × 10 -3 |
Fig. 8. Wear behavior of the Cu-Ti coating and CO-SPC coating: (a) friction coefficient; (b) wear rate; (c) 3D optical profilometer images showing the wear tracks of the two coatings; and (d) a typical line profile of the wear tracks.
Fig. 9. SEM images showing the worn surfaces of (a-c) CO-SPC coating and (d-f) Cu-Ti composite coating at different magnifications. (c) A magnified image showing the exposed substrate in (b). (f) A magnified image of the tribolayer in (e).
Points | Chemical composition (wt.%) | |||||
---|---|---|---|---|---|---|
Ti | Cu | O | C | Al | V | |
1 | 86.14 | - | 3.1 | - | 6.21 | 4.54 |
2 | 13.67 | - | 20.04 | 66.58 | - | - |
3 | 30.69 | 62.82 | 6.49 | - | - | - |
4 | 85.28 | 6.95 | 7.78 | - | - | - |
Table 2 Main chemical composition of the worn surface characterized by EDS.
Points | Chemical composition (wt.%) | |||||
---|---|---|---|---|---|---|
Ti | Cu | O | C | Al | V | |
1 | 86.14 | - | 3.1 | - | 6.21 | 4.54 |
2 | 13.67 | - | 20.04 | 66.58 | - | - |
3 | 30.69 | 62.82 | 6.49 | - | - | - |
4 | 85.28 | 6.95 | 7.78 | - | - | - |
[1] |
X. Han, J.H. Wu, X.H. Zhang, J.Y. Shi, J.X. Wei, Y. Yang, B. Wu, Y.H. Feng, J. Mater. Sci. Technol. 61 (2021) 46-62.
DOI URL |
[2] | A.B. Tesler, P. Kim, S. Kolle, C. Howell, O. Ahanotu, J. Aizenberg, Nat. Commun. 6 (2015) 9649-9658. |
[3] |
M.S. Selim, M.A. Shenashen, S. A.El-Safty, S.A. Higazy, H. Isago, A. Elmarakbi, Prog. Mater. Sci. 87 (2017) 1-32.
DOI URL |
[4] |
X.R. Liu, K.L. Wang, W. Zhang, J.Z. Zhang, J.Z. Li, Compos. Part B Eng. 174 (2019) 107002-107011.
DOI URL |
[5] |
W.J. Long, H.N. Li, B. Yang, N. Huang, L.S. Liu, Z.G. Gai, X. Jiang, J. Mater. Sci. Technol. 48 (2020) 1-8.
DOI URL |
[6] |
J.A. Callow, M.E. Callow, Nat. Commun. 2 (2011) 244-253.
DOI PMID |
[7] |
Y. Zou, Y.X. Zhang, Q. Yu, H. Chen, J. Mater. Sci. Technol. 70 (2021) 24-38.
DOI URL |
[8] |
Q.Y. Xie, C.F. Ma, C. Liu, J.L. Ma, G.Z. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 21030-21037.
DOI URL |
[9] |
J.X. Wang, C.J. He, Appl. Surf. Sci. 463 (2019) 1097-1106.
DOI URL |
[10] |
Y. Yang, X.J. Li, X. Zheng, Z.Y. Chen, Q.F. Zhou, Y. Chen, Adv. Mater. 30 (2018) 1704912-1704920.
DOI URL |
[11] |
Y. Yu, N.N. Xu, S.Y. Zhu, Z.H. Qiao, J.B. Zhang, J. Yang, W.M. Liu, J. Mater. Sci. Technol. 69 (2021) 48-59.
DOI URL |
[12] |
X.B. Bai, J.L. Li, L.H. Zhu, L.P. Wang, Appl. Surf. Sci. 427 (2018) 444-451.
DOI URL |
[13] | F.L. Ma, J.L. Li, Z.X. Zeng, Y.M. Gao, J. Mater. Sci. Technol. 35 (2019) 448-459. |
[14] |
W.T. Wu, W.J. Zhao, Y.H. Wu, C.X. Zhou, L.Y. Li, Z.X. Liu, J.D. Dong, K.H. Zhou, Appl. Surf. Sci. 465 (2019) 279-287.
DOI URL |
[15] |
Z.M. Jia, Y.Y. Liu, Y.Y. Wang, Y.F. Gong, P.P. Jin, X.K. Suo, H. Li, Surf. Coat. Technol. 309 (2017) 872-879.
DOI URL |
[16] |
L. Kiaune, S. Nan, Rev. Environ. Contam. Toxicol. 213 (2011) 1-26.
DOI PMID |
[17] |
Y. Liu, X.K. Suo, Z. Wang, Y.F. Gong, X. Wang, H. Li, Mater. Des. 130 (2017) 285-293.
DOI URL |
[18] | S. Jiang, T. Sreethawong, S.S.C. Lee, M.B.J. Low, M.O. Han, Adv. Mater. Interfaces 2 (2015) 152-156. |
[19] |
H.L. Huang, F.R. Bu, Corros. Sci. 165 (2020) 108413-108429.
DOI URL |
[20] |
E. Rahimi, A. Rafsanjani-Abbasi, A. Imani, S. Hosseinpour, A. Davoodi, Materials 11 (2018) 1820-1840.
DOI URL |
[21] |
L.J. Shi, X.Y. Yang, Y.W. Song, D. Liu, K.H. Dong, D.Y. Shan, E.H. Han, J. Mater. Sci. Technol. 35 (2019) 1886-1893.
DOI URL |
[22] | Y.F. Chen, Z.X. Li, L.T. Liu, H.N. Wang, Y.F. Wang, Y.F. Peng, Rare Met. Mater. Eng. 48 (2019) 1161-1167. |
[23] | J.L. Sui, Study on the Accelerated Galvanic Corrosion Behavior and Antifouling Performance of Copper Alloy, Master Thesis, Qingdao University of Science and Technology, 2016. |
[24] | Z.X. Li, H.N. Wang, Y.F. Wang, S.P. Wang, H.Y. Yang, C.L. Huang, China Patent, CN106757057B, 2019. |
[25] |
S.K. Yan, G.L. Song, Z.X. Li, H.N. Wang, D.J. Zheng, F.Y. Cao, M. Horynova, M.S. Dargusch, L. Zhou, J. Mater. Sci. Technol. 34 (2018) 421-435.
DOI URL |
[26] | J.C. Guo, C.D. Wang, H.B. Yu, X. Li, Prog. Org. Coat. 146 (2020) 105710-105716. |
[27] | P. Kavouras, A.F. Trompeta, S. Larroze, M. Maranhao, T. Teixeira, M. Beltri, E.P. Koumoulos, C.A. Charitidis, Prog. Org. Coat. 136 (2019) 105249-105258. |
[28] |
X. Sun, R.R. Chen, X. Gao, Q. Liu, J.Y. Liu, H.S. Zhang, J. Yu, P.L. Liu, K. Takahashi, J. Wang, Eur. Polym. J. 117 (2019) 77-85.
DOI URL |
[29] |
M. Fernandez-Alvarez, F. Velasco, A. Bautista, Wear 448-449 (2020) 203211-203220.
DOI URL |
[30] | ISO 151812007, Paints and Varnishes-Determination of Release Rate of Biocides from Antifouling Paints, ISO Standards. |
[31] |
J.J. Tian, S.W. Yao, X.T. Luo, C.X. Li, C.J. Li, Acta Mater. 110 (2016) 19-30.
DOI URL |
[32] |
C.J. Li, A. Ohmori, J. Therm. Spray Technol. 11 (2002) 365-374.
DOI URL |
[33] |
S.M. Baek, H.J. Kim, H.Y. Jeong, S.D. Sohn, H.J. Shin, K.J. Choi, K.S. Lee, J.G. Lee, C.D. Yim, B.S. You, Corros. Sci. 112 (2016) 44-53.
DOI URL |
[34] |
M. Sarvghad-Moghaddam, R. Parvizi, A. Davoodi, M. Haddad-Sabzevar, A. Imani, Corros. Sci. 79 (2013) 148-158.
DOI URL |
[35] | Z.X. Li, Y.F. Wang, H.N. Wang, C.L. Huang, S.P. Wang, H.Y. Yang, China Patent, CN105297031A, 2016. |
[36] |
M. Lejars, A. Margaillan, C. Bressy, Chem. Rev. 112 (2012) 4347-4390.
DOI URL |
[37] |
E. Almeida, T.C. Diamantino, O.D. Sousa, Prog. Org. Coat. 59 (2007) 2-20.
DOI URL |
[38] |
Q.Y. Xie, J.S. Pan, C.F. Ma, G.Z. Zhang, Soft Matter 15 (2019) 1087-1107.
DOI URL |
[39] |
W.H. Wang, X.P. Hao, S.G. Chen, Z.Q. Yang, C.Y. Wang, R. Yan, X. Zhang, H. Liu, Q. Shao, Z.H. Guo, Polymer 158 (2018) 223-230.
DOI URL |
[40] |
G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 77 (2011) 1541-1547.
DOI URL |
[41] |
B.D. Mattos, B.L. Tardy, W.L.E. Magalhaes, O.J. Rojas, J. Control. Release 262 (2017) 139-150.
DOI URL |
[42] |
R.R. Price, B.P. Gaber, Y. Lvov, J. Microencapsulation 18 (2001) 713-722.
DOI URL |
[43] |
P.S. Sane, S.K. Ghosh, D.C. Sundberg, J. Coat. Technol. Res. 16 (2019) 1193-1200.
DOI URL |
[44] |
X.P. Hao, S.G. Chen, D. Qin, M.T. Zhang, W. Li, J.C. Fan, C. Wang, M.Y. Dong, J.X. Zhang, F. Cheng, Z.H. Guo, Mater. Sci. Eng. C 108 (2019) 110361-110372.
DOI URL |
[45] | S. Wang, L. Tang, J. Wang, W. Bo, Paint Coat. Ind. 12 (2013) 6-9. |
[46] |
J.D. Oliveira, R.C. Rocha, A.G.D.S. Galdino, J. Mater. Res. Technol. 8 (2019) 1729-1736.
DOI |
[47] |
M. Esfandeh, S.M. Mirabedini, S. Pazokifard, M. Tari, Colloids Surf. A 302 (2007) 11-16.
DOI URL |
[48] |
J.W. Zhang, Y.X. Wang, S.G. Zhou, Y.C. Wang, C.T. Wang, W.M. Guo, X.J. Lu, L.P. Wang, Tribol. Int. 143 (2020) 106029-106039.
DOI URL |
[49] |
V.N.V. Munagala, S. Bessette, R. Gauvin, R.R. Chromik, Wear 450-451 (2020) 203268-203281.
DOI URL |
[50] | H. Guo, S.D. Zhang, W.H. Sun, J.Q. Wang, J. Mater. Sci. Technol. 35 (2019) 865-874. |
[51] |
V. N.V.Munagala, T.B. Torgerson, T.W. Scharf, R.R. Chromik, Wear 426-427 (2019) 357-369.
DOI URL |
[52] |
X.X. Li, Q.Y. Zhang, Y. Zhou, J.Q. Liu, K.M. Chen, S.Q. Wang, Tribol. Lett. 61 (2016) 14-22.
DOI URL |
[53] |
H. Yan, M. Cai, W. Li, X.Q. Fan, M.H. Zhu, J. Mater. Sci. Technol. 54 (2020) 144-159.
DOI URL |
[54] |
J.K. Xiao, W. Zhang, L.M. Liu, X.P. Gan, K.C. Zhou, C. Zhang, Surf. Coat. Technol. 337 (2018) 159-167.
DOI URL |
[55] | C.J. Huang, W.Y. Li, M.P. Planche, H.L. Liao, G. Montavon, J. Mater. Sci. Technol. 33 (2017) 507-515. |
[1] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[2] | Yang Yang, Li Kezhi, Liu Guanxi, Zhao Zhigang. Ablation Mechanism of HfC-HfO2 Protective Coating for SiC-Coated C/C Composites in an Oxyacetylene Torch Environment [J]. J. Mater. Sci. Technol., 2017, 33(10): 1195-1202. |
[3] | Chao Ma, Hejun Li, Heng Wu, Qiangang Fu, Can Sun, Xiaohong Shi, Yulei Zhang, Zhengzhong Zhang, Jun Tao, Zhihai Han. Mullite Oxidation Resistant Coating for SiC-coated Carbon/Carbon Composites by Supersonic Plasma Spraying [J]. J. Mater. Sci. Technol., 2013, 29(1): 29-33. |
[4] | Wu Chen,Weiping Ye,Xudong Cheng,Wei Duan,Fang Mao,Deliang Li. Preparation, Microstructure and Properties of NiO-Cr2O3-TiO2 Infrared Radiation Coating [J]. J Mater Sci Technol, 2009, 25(05): 695-698. |
[5] | Ali LEI, Nan DONG, Lajun FENG. Preparation and Properties of Plasma Spraying Cu-Al2O3 Gradient Coatings [J]. J Mater Sci Technol, 2007, 23(03): 383-386. |
[6] | Na WANG, Chungen ZHOU, Shengkai GONG, Huibin XU. Influence of Annealing on the Grain Growth and Thermal Diffusivity of Nanostructured YSZ Thermal Barrier Coating [J]. J Mater Sci Technol, 2006, 22(06): 793-797. |
[7] | G.Montay, A.Cherouat, A.Nussair, J.Lu. Residual Stresses in Coating Technology [J]. J Mater Sci Technol, 2004, 20(Supl.): 81-84. |
[8] | Yuanzheng YANG, Xiaojun BAI, Zhiwei XIE, Tongchun KUANG, Zhengyi LIU, Yuzhi ZHUANG, Baiyun TONG, Yong LIANG. Influence of Additive Silica on the Laser Melting of the Ceramic Coatings [J]. J Mater Sci Technol, 2003, 19(01): 33-36. |
[9] | TAO Zengyi WANG Aihua ZHU Beidi DENG Shijun CHENG Xudong FU Jiangmin Huazhong University of Science and Technology Wuhan,430074,ChinaWuhan Research Institute of Material Protection,Wuhan,430000,China. Laser Modification of Plasma Sprayed Alumina Coating [J]. J Mater Sci Technol, 1992, 8(5): 325-329. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||