J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (12): 1361-1371.DOI: 10.1016/j.jmst.2016.04.018
• Orginal Article • Previous Articles Next Articles
Zhu Yanan,Zheng Ganhong*(),Dai Zhenxiang,Zhang Lingyun,Mu Jingjing
Received:
2016-01-12
Accepted:
2016-04-08
Online:
2016-12-20
Published:
2017-02-16
Contact:
Zheng Ganhong
Zhu Yanan,Zheng Ganhong,Dai Zhenxiang,Zhang Lingyun,Mu Jingjing. Core-Shell Structure and Luminescence of SrMoO4:Eu3+ (10%) Phosphors[J]. J. Mater. Sci. Technol., 2016, 32(12): 1361-1371.
Samples | Preparation methods | pH value | Stirring speed, Vs (r/min) | Sintering temperature |
---|---|---|---|---|
S1 | Co-precipitation | 8 | — | — |
S2 | Co-precipitation | 9 | — | — |
S3 | Hydrothermal | 8 | 0 | — |
S4 | Hydrothermal | 9 | 0 | — |
S5 | Hydrothermal | 6 | 0 | — |
S6 | Hydrothermal | 7 | 0 | — |
S7 | Hydrothermal | 6 | 100 | — |
S8 | Hydrothermal | 7 | 100 | — |
S9 | Hydrothermal | 8 | 100 | — |
S10 | Hydrothermal | 9 | 100 | — |
S11 | Hydrothermal | 8 | 50 | — |
S12 | Hydrothermal | 8 | 150 | — |
S13 | Hydrothermal | 8 | 0 | 200 °C |
S14 | Hydrothermal | 8 | 0 | 300 °C |
S15 | Hydrothermal | 8 | 0 | 500 °C |
Table 1. Summary of the experimental conditions
Samples | Preparation methods | pH value | Stirring speed, Vs (r/min) | Sintering temperature |
---|---|---|---|---|
S1 | Co-precipitation | 8 | — | — |
S2 | Co-precipitation | 9 | — | — |
S3 | Hydrothermal | 8 | 0 | — |
S4 | Hydrothermal | 9 | 0 | — |
S5 | Hydrothermal | 6 | 0 | — |
S6 | Hydrothermal | 7 | 0 | — |
S7 | Hydrothermal | 6 | 100 | — |
S8 | Hydrothermal | 7 | 100 | — |
S9 | Hydrothermal | 8 | 100 | — |
S10 | Hydrothermal | 9 | 100 | — |
S11 | Hydrothermal | 8 | 50 | — |
S12 | Hydrothermal | 8 | 150 | — |
S13 | Hydrothermal | 8 | 0 | 200 °C |
S14 | Hydrothermal | 8 | 0 | 300 °C |
S15 | Hydrothermal | 8 | 0 | 500 °C |
Fig. 1. XRD patterns for S1 (Co-precipitation method) and S3 (hydrothermal method) samples (a), and for S13 (pH = 8, hydrothermal method, sintering 200 °C), S14 (pH = 8, hydrothermal method, sintering300 °C) and S15 (pH = 8, hydrothermal method, sintering 500 °C) samples (b).
Fig. 3. SEM and TEM images of the SrMoO4:Eu samples (S1-4) prepared via the co-precipitation (S1 (a, c), S2 (b, d)) and hydorthermal method (S3 (e, f), S4 (g, h)).
Scheme 1. Schematic illustration for the possible formation mechanism of SrMoO4 with various SEM morphologies under different experimental methods and conditions.
Fig. 4. SEM images of S3 (a, e) (pH = 8, hydrothermal method), S4 (b, f) (pH = 9, hydrothermal method), S5 (c, g) (pH = 6, hydrothermal method), and S6 (d, h) (pH = 7, hydrothermal method) samples.
Fig. 5. SEM images of S7 (a) (pH = 6, hydrothermal method, stirring speed Vs = 100 r/min), S8 (b) (pH = 7, hydrothermal method, stirring speed Vs = 100 r/min), S9 (c) (pH = 8, hydrothermal method, stirring speed Vs = 100 r/min), and S10 (d) (pH = 9, hydrothermal method, stirring speed Vs = 100 r/min) samples.
Fig. 6. SEM images of S3 (a, e) (pH = 8, hydrothermal method, stirring speed Vs = 0), S11 (b, f) (pH = 8, hydrothermal method, stirring speed Vs = 50 r/min), S9(c, g) (pH = 8, hydrothermal method, stirring speed Vs = 100 r/min), and S12 (d, h) (pH = 8, hydrothermal method, stirring speed Vs = 150 r/min) samples.
Fig. 10. Excitation spectra for monitoring the emission at λem = 616 nm of S3 (pH = 8, hydrothermal method), S4 (pH = 9, hydrothermal method), S5 (pH = 6, hydrothermal method), and S6 (pH = 7, hydrothermal method) samples.
Fig. 11. Emission spectra for S3 (pH = 8, hydrothermal method), S4 (pH = 9, hydrothermal method), S5 (pH = 6, hydrothermal method), and S6 (pH = 7, hydrothermal method) samples under 396 nm excitation.
Fig. 12. Excitation spectra for monitoring the emission at λem = 616 nm (a) and emission spectra under 396 nm excitation for S3 (pH = 8, hydrothermal method, stirring speed Vs = 0), S11 (pH = 8, hydrothermal method, stirring speed Vs = 50 r/min), S9 (pH = 8, hydrothermal method, stirring speed Vs = 100 r/min), and S12 (pH = 8, hydrothermal method, stirring speed Vs = 100 r/min) samples.
Samples at different stirring speeds (r/min) | R/O | CIE (x,y) |
---|---|---|
0 | 4.7557 | (0.59,0.34) |
50 | 4.3247 | (0.64,0.33) |
100 | 3.9965 | (0.64,0.32) |
150 | 3.9743 | (0.65,0.33) |
Table 2. R/O Ratios and CIE coordinates for samples at different stirring speeds
Samples at different stirring speeds (r/min) | R/O | CIE (x,y) |
---|---|---|
0 | 4.7557 | (0.59,0.34) |
50 | 4.3247 | (0.64,0.33) |
100 | 3.9965 | (0.64,0.32) |
150 | 3.9743 | (0.65,0.33) |
Fig. 13. Variation of emission intensities around 592, 616, 625, and 700 nm for stirring speeds of 0, 50, 100 and 150 r/min) samples under 396 nm excitation.
Fig. 14. Emission spectra for S3 (pH = 8, hydrothermal method, no-sintering), S13 (pH = 8, hydrothermal method, sintering 200 °C), S14 (pH = 8, hydrothermal method, sintering 300 °C) and S15 (pH = 8, hydrothermal method, sintering 500 °C) samples under 396 nm excitation.
Fig. 15. FT-IR spectra of the S1 (co-precipitation method), S5 (hydrothermal method pH = 6), S9 (hydrothermal method pH = 6, stirring speed Vs = 100 r/min), S10 (hydrothermal method pH = 9, stirring speed Vs = 100 r/min), and S15 (hydrothermal method pH = 8, stirring speed Vs = 0, sintering 500 °C) samples.
|
[1] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[2] | Yinli Peng, Nan Wang. Effect of phase-separated patterns on the formation of core-shell structure [J]. J. Mater. Sci. Technol., 2020, 38(0): 64-72. |
[3] | Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 169-176. |
[4] | Zhaojun Mo, Qiujie Lu, Zhihong Hao, Zhexuan Zheng, Fu Qiu, Xiao Yang, Zhenyu Li, Lan Li. Effects of 1,9-dibromnonane on the structural, photophysical properties and stability of cesium lead bromide perovskite nanocrystals [J]. J. Mater. Sci. Technol., 2020, 43(0): 84-91. |
[5] | Mi Gyeong Kim, Wan-Kuen Jo. Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors [J]. J. Mater. Sci. Technol., 2020, 40(0): 168-175. |
[6] | Wenguang Zhu, Changsheng Tan, Ruoyu Xiao, Qiaoyan Sun, Jun Sun. Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2020, 57(0): 188-196. |
[7] | Shijie Xu, Ying Huang, Zhicheng Su, Rongxin Wang, Jianrong Dong, Deliang Zhu. Storage and transfer of optical excitation energy in GaInP epilayer: Photoluminescence signatures [J]. J. Mater. Sci. Technol., 2019, 35(7): 1364-1367. |
[8] | Chaomin Zhang, Yong Jiang, Fuhua Cao, Tao Hu, Yiren Wang, Dengfeng Yin. Formation of coherent, core-shelled nano-particles in dilute Al-Sc-Zr alloys from the first-principles [J]. J. Mater. Sci. Technol., 2019, 35(5): 930-938. |
[9] | Kaishun Zou, Guangzong Dong, Juncheng Liu, Boxu Xu, Danping Wang. Effects of calcination temperature and Li+ ions doping on structure and upconversion luminescence properties of TiO2:Ho3+-Yb3+ nanocrystals [J]. J. Mater. Sci. Technol., 2019, 35(4): 483-490. |
[10] | Shang Zhou, Hua Wang, Li Zhong, Junqian Zhao, Liang Li, Guanghai Li. Synthesis and photoluminescence of Ca1-xTiO3:xEu3+ nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(6): 949-954. |
[11] | Xiaoqi Meng, Changjiang Zhao, Boxu Xu, Pei Wang, Juncheng Liu. Effects of the annealing temperature on the structure and up-conversion photoluminescence of ZnO film [J]. J. Mater. Sci. Technol., 2018, 34(12): 2392-2397. |
[12] | Zhu Ya-Nan, Zheng Gan-Hong, Dai Zhen-Xiang, Mu Jing-Jing, Yao Zi-Fen. Mono-disperse SrMoO4 nanocrystals: Synthesis, luminescence and photocatalysis [J]. J. Mater. Sci. Technol., 2017, 33(8): 834-842. |
[13] | Zhu Yanan,Zheng Ganhong,Dai Zhenxiang,Zhang Lingyun,Ma Yongqing. Photocatalytic and Luminescent Properties of SrMoO4 Phosphors Prepared via Hydrothermal Method with Different Stirring Speeds [J]. J. Mater. Sci. Technol., 2017, 33(1): 23-29. |
[14] | Liubing Huang, Jia Grace Lu. Synthesis, Characterizations and Applications of Cadmium Chalcogenide Nanowires: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 556-572. |
[15] | Arockiasamy Ajaypraveenkumar, Johnson Henry, Kannusamy Mohanraj, Ganesan Sivakumar, Sankaran Umamaheswari. Characterisation, Luminescence and Antibacterial Properties of Stable AgNPs Synthesised from AgCl by Precipitation Method [J]. J. Mater. Sci. Technol., 2015, 31(11): 1125-1132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||