Please wait a minute...
J. Mater. Sci. Technol.  2015, Vol. 31 Issue (5): 427-436    DOI: 10.1016/j.jmst.2014.10.012
Orginal Article Current Issue | Archive | Adv Search |
In vitro Response of Human Mesenchymal Stromal Cells to Titanium Coated Peek Films and Their Suitability for Magnetic Resonance Imaging
Cindy Elschner1, *, Carolin Noack2, Carolin Preißler3, Andreas Krause4, Ulrich Scheler1, *, Ute Hempel3
1 Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany; 2 CRTD/DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany; 3 Institut für Physiologische Chemie, Technische Universität Dresden, Fiedlerstr. 42, 01307 Dresden, Germany; 4 NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden, Germany
Download: PDF (1992 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Medical imaging is an important tool for the post-operative checkup of an accurate position of an implant as well as for monitoring the integration in the adjacent tissue that may influence the success of a medical device. Unfortunately, the possibility to use imaging methods is associated with the implant material and all the established metallic materials for surgery do not show a proper “imaging compatibility”. The present study is a combined investigation of the in vitro response to human mesenchymal stromal cells (hMSC) and magnetic resonance imaging (MRI) compatibility of the potential material combination polyetheretherketone/titanium (PEEK/Ti) for medical devices. Because of the advantageous imaging properties and the mechanical and chemical stability, PEEK becomes more and more an alternative to common metallic implant materials like titanium or cobalt?chrome. However, PEEK is a bioinert material having a limited ability for direct bone incorporation. Due to its excellent biocompatibility, Ti was chosen as coating material to enhance the cellular response. The result is a combination with advantageous properties: the magnetic susceptibility and elastic modulus close to bone, corrosion resistance and mechanical flexibility of PEEK and the excellent biocompatibility of titanium. The appearance of metal-related artifact was discussed in electrical resistivity and magnetic susceptibility. Therefore, two titanium coatings have been investigated: a complete coating and a structured surface avoiding surface conductivity. To determine the in vitro biocompatibility, the cell responses were assessed in terms of the overall morphology of the hMSC and their cell area distribution, proliferation, osteogenic differentiation and mineral deposition. The cellular stress was evaluated by the prostaglandin E2 level. The bonded materials both produced no disturbing artifacts in magnetic resonance imaging. Compared to the pure PEEK material, the titanium coated specimens showed an enhanced biocompatibility, which is indicated by a higher cell number, larger activity of the enzyme tissue non-specific alkaline phosphatase and therefore a greater amount of deposited calcium and phosphate. The results on bare PEEK are accompanied with a higher cellular stress level, which is indicated by prostaglandin E2.
Key wordsPolyetheretherketone      Titanium coating      Biocompatibility      Magnetic resonance imaging      Human mesenchymal stromal cells     
Received: 24 July 2014      Published: 23 July 2015
Fund:This work was supported by grant of Deutsche Forschungsgemeinschaft (grant SFB/ Transregio 67, projects B1 and B8) and the European Social Fund through Sächsische Aufbaubank (grant number: 100107173). The authors thank Evonik Industries AG (Darmstadt, Germany) for PEEK sample consignments and the Franz Eckert GmbH (Waldkirch, Germany) for the friendly consignment of a stainless steel wire mesh. Additionally, the authors thank Chris Elschner and Sylvio Schubert (Institut für Angewandte Photophysik, Technische Universität Dresden) for their help with the determination of the electrical resistivity of the specimen. From the Leibniz-Institut für Polymerforschung Dresden e.V. the authors thank the following colleagues for their support: Marina Oelmann for the determination of the water contact angles of the specimen, Holger Scheibner and Konrad Schneider for the bond strength measurements and Bodo Vieweg and Birgit Urban for technical assistance in the lab.
Corresponding Authors: Corresponding authors. Tel.: +49 351 4658 432; Fax: +49 351 4658 231. E-mail addresses: cindy.elschner@gmx.de (C. Elschner), scheler@ipfdd.de(U. Scheler).     E-mail: cindy.elschner@gmx.de

Cite this article:

Cindy Elschner, Carolin Noack, Carolin Preiß, ler, Andreas Krause, Ulrich Scheler, Ute Hempel. In vitro Response of Human Mesenchymal Stromal Cells to Titanium Coated Peek Films and Their Suitability for Magnetic Resonance Imaging. J. Mater. Sci. Technol., 2015, 31(5): 427-436.

URL:

http://210.72.130.126/Jwk_wk/clkxjs/EN/10.1016/j.jmst.2014.10.012     OR     http://210.72.130.126/Jwk_wk/clkxjs/EN/Y2015/V31/I5/427

Photographs of the specimen (a-d) and their corresponding light micrographs (a′
?d′
): (a, a′
) PEEK film, (b, b′
) PEEK film with unstructured Ti layer (thickness: 50 nm), (c, c′
) PEEK film with structured Ti layer (thickness: 50 nm)
the white spots consist of Ti and the mesh is the pure PEEK polymer, and (d, d′
[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. , 54 (2009), pp. 397-425
[2] B.M. Holzapfel, J.C. Reichert, J.T. Schantz, U. Gbureck, U. Nöth, F. Jakob, M. Rudert, J. Groll, D.W. Hutmacher, Adv. Drug Deliver Rev. , 65 (2013), pp. 581-603
[3] L.L. Hench, I. Thompson, J. R. Soc. Interface , 7 (2010), pp. 379-391
[4] R. Smith-Bindman, D.L. Miglioretti, E. Johnson, C. Lee, H.S. Feigelson, M. Flynn, R.T. Greenlee, R.L. Kruger, M.C. Hornbrook, D. Roblin, L.I. Solberg, N. Vanneman, S. Weinmann, A.E. Williams, JAMA , 307 (2012), pp. 2400-2409
[5] F.K. Korley, J.C. Pham, T.D. Kirsch, JAMA , 304 (2010), pp. 1465-1471
[6] R. Pauwels, H. Stamatakis, H. Bosmans, R. Bogaerts, R. Jacobs, K. Horner, K. Tsiklakis, Clin. Oral Impl. Res. , 24 (2011), pp. 94-99
[7] J. Starčuková, Z. Starčuk Jr., H. Hubálková, I. Linetskiy, Dent. Mater. (2008), pp. 715-723
[8] B.A. Hargreaves, P.W. Worters, K.B. Pauly, J.M. Pauly, K.M. Koch, G.E. Gold, AJR Am. J. Roentgenol , 197 (2011), pp. 547-555
[9] K.M. Koch, B.A. Hargreaves, B.P.K. Pauly, W. Chen, G.E. Gold, K.F. King, J. Magn. Reson. Imaging , 32 (2010), pp. 773-787
[10] H. Graf, T. Klemm, U.A. Lauer, S. Duda, C.D. Claussen, F. Schick, Fortschr. Röntgenstr. (2003), pp. 1711-1719
[11] F.G. Shellock, E. Kanal, Radiology , 209 (1998), pp. 563-566
[12] J.H. Kim, K.S. Min, S.K. An, J.S. Jeong, S.B. Jun, M.H. Cho, Y.D. Son, Z.H. Cho, S.J. Kim, Clin. Exp. Otorhinolar , 5 (2012), pp. 19-23
[13] H. Graf, U.A. Lauer, T. Klemm, L. Schnieder, F. Schick, Z. Med. Phys. (2003), pp. 165-170
[14] U.A. Lauer, H. Graf, A. Berger, C.D. Claussen, F. Schick, Magn. Reson. Imaging , 23 (2005), pp. 563-569
[15] R. Schulze, U. Heil, D. Groß, D.D. Bruellmann, E. Dranischnikow, U. Schwanecke, E. Schoemer, Dentomaxillofac. Rad. , 40 (2011), pp. 265-273
[16] B. Vande Berg, J. Malghem, B. Maldague, F. Lecouvet, Eur. J. Radiol. , 60 (2006), pp. 470-479
[17] S.P. Rodrigues, J.M. Paiva, S. de Francesco, M.I. Amaral, F.J. Oliveira, R.F. Silva, J. Mater. Sci.-Mater. M. , 24 (2013), pp. 231-239
[18] S.M. Kurtz, J.N. Devine, Biomaterials , 28 (2007), pp. 4845-4869
[19] C.M. Han, E.J. Lee, H.E. Kim, Y.H. Koh, K.N. Kim, Y. Ha, S.U. Kuh, Biomaterials , 31 (2010), pp. 3465-3470
[20] Y. Zhao, H.M. Wong, W. Wang, P. Li, Z. Xu, E.Y.W. Chong, C.H. Yan, K.W.K. Yeung, P.K. Chu, Biomaterials , 34 (2013), pp. 9264-9277
[21] J.D. van Beek, matNMR: J. Magn. Reson. , 187 (2007), pp. 19-26
[22] J. Oswald, S. Boxberger, B. Jørgensen, S. Feldmann, G. Ehninger, M. Bornhäuser, C. Werner, Stem Cells, 22 (2004), pp. 377-384
[23] U. Hempel, T. Hefti, M. Kalbacova, C. Wolf-Brandstetter, P. Dieter, F. Schlottig, Clin. Oral Impl. Res. , 21 (2010), pp. 174-181
[24] A.H. Lutter, U. Hempel, C. Wolf-Brandstetter, A.I. Garbe, C. Göttsch, L.C. Hofbauer, R. Jessberger, P. Dieter, J. Cell Biochem. , 109 (2010), pp. 1025-1032
[25] P. Dieter, U. Hempel, S. Kamionka, A. Kolada, B. Malessa, E. Fitzke, T.A. Tran-Thi, Mediat. Inflamm. , 8 (1999), pp. 295-303
[26] H. Zimmermann, M. Heinlein, N.W. Guldner, Titanisierung von Implantatoberflächen. E. Wintermantel, S.W. Ha (Eds.), Medizintechnik, Springer Berlin Heidelberg, Berlin, Heidelberg (2009), pp. 907-925
[27] P. Kalinski, J. Immunol. , 188 (2012), pp. 21-28
[28] E. Pecchi, M. Dallaporta, A. Jean, S. Thirion, J.-D. Troadec, Physiol. Behav. , 97 (2009), pp. 279-292
[29] L. Engström, J. Ruud, A. Eskilsson, A. Larsson, L. Mackerlova, U. Kugelberg, H. Qian, A.M. Vasilache, P. Larsson, D. Engblom, D. Sigvardsson, J.I. Jönsson, A. Blomqvist, Neuroendocrinology , 153 (2012), pp. 4849-4861
[30] J. Fuchs, C. Scheidt-Nave, T. Hinrichs, A. Mergenthaler, J. Stein, S.G. Riedel-Heller, E. Grill, Int. J. Environ. Res. Public Health , 10 (2013), pp. 6630-6644
[31] C. Hamann, S. Kirschner, K.P. Guenther, L.C. Hofbauer, Nat. Rev. Endocrinol. , 8 (2012), pp. 297-305
[32] S. Harms, L. Larson, A.E. Sahmoun, J.R. Beal, Int. Orthop. , 31 (2007), pp. 23-26
[33] F. Jakob, R. Ebert, a. Ignatius, T. Matsushita, Y. Watanebe, J. Groll, H. Walles, Maturitas , 75 (2013), pp. 118-124
[34] N.V. Hinchy, V. Jayaprakash, R.A. Rossitto, P.L. Anders, K.C. Korff, P. Canallatos, M.A. Sullivan, Oral Oncol. , 49 (2013), pp. 878-886
[35] A. Mort, D. Godden, Clin. J. Sport Med. , 21 (2011), pp. 530-536
[36] C.A. Wijdicks, B.S. Rosenbach, T.R. Flanagan, G.E. Bower, K.E. Newman, T.O. Clanton, L. Engebretsen, R.F. LaPrade, T.R. Hacket, Br. J. Sports Med. , 48 (2014), pp. 11-17
[37] J.G. Bourgois, J. Boone, M. Callewaert, M.J. Tipton, I.B. Tallir, Sports Med. , 44 (2014), pp. 55-66
[38] L. Vanlommel, J. Vanlommel, P. Bollars, L. Quisquater, K. van Crombrugge, K. Corten, J. Bellemans, Int. J. Care Injured , 44 (2013), pp. 1847-1850
[39] E.D. Richter, T. Berman, L. Friedman, G. Ben-David, Annu. Rev. Public Health , 27 (2006), pp. 125-152
[40] R.L.F. de Almeida, J.G.B. Filho, J.U. Braga, F.B. Magalhaes, M.C.M. Macedo, K.A. Silva, Rev. Saúde Pública , 47 (2013), pp. 1-13
[41] T.J. Dennes, J. Schwartz, JACS , 131 (2009), pp. 3456-3457
[42] B.D. Hahn, D.S. Park, J.J. Choi, R. Jungho, W.H. Yoon, J.H. Choi, J.W. Kim, C.W. Ahn, H.E. Kim, B.H. Yoon, I.K. Jung, Appl. Surf. Sci. , 283 (2013), pp. 6-11
[43] A.H.C. Poulsson, D. Eglin, S. Zeitner, K. Camenisch, C. Sprecher, Y. Agarwal, D. Nehrbass, J. Wilson, R.G. Richards, Biomaterials , 35 (2014), pp. 3717-3728
[44] A. Riveiro, R. Soto, R. Comesaña, M. Boutinguiza, J. del Val, F. Quintero, F. Lusquiños, J. Pou, Appl. Surf. Sci. , 258 (2012), pp. 9437-9442
[45] S.M. Oliveira, N.M. Alves, J.F. Mano, J. Adhes. Sci. Technol. , 28 (2014), pp. 843-863
[46] M. Lampin, R. Clerout-Warocquier, C. Legris, M. Degrange, M.F. Sigot-Luizard, J. Biomed. Mater. Res. , 36 (1997), pp. 99-108
[47] F.Y. Zhou, K.J. Qiu, D. Bian, Y.F. Zheng, J.P. Lin, J. Mater. Sci. Technol. , 30 (2014), pp. 299-306
[48] C.R. Camacho, D.B. Plewes, R.M. Henkelman, J. Magn. Reson. Imaging (1995), pp. 75-88
[49] D.R. Lide, CRC Handbook of Chemistry and Physics . (77th ed.)CRC Press, Boca Raton, New York, London, Tokyo (1996)
[50] Product Information VESTAKEEP ® Film 0FH80 (2006)
[1] Lavanya Khanna, N.K. Verma. Synthesis, Characterization and Biocompatibility of Potassium Ferrite Nanoparticles[J]. J. Mater. Sci. Technol., 2014, 30(1): 30-36.
[2] J. Cheng, B. Liu, Y.H. Wu, Y.F. Zheng. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals[J]. J. Mater. Sci. Technol., 2013, 29(7): 619-627.
[3] M.A. Naghiu, M. Gorea, E. Mutch, F. Kristaly, M. Tomoaia-Cotisel. Forsterite Nanopowder: Structural Characterization and Biocompatibility Evaluation[J]. J. Mater. Sci. Technol., 2013, 29(7): 628-632.
[4] Nan Li, Yufeng Zheng. Novel Magnesium Alloys Developed for Biomedical Application: A Review[J]. J. Mater. Sci. Technol., 2013, 29(6): 489-502.
[5] Qiang Zhang, Xiao Lin, Zhengrong Qi, Lili Tan, Ke Yang, Zhuangqi Hu, Yan Wang. Magnesium Alloy for Repair of Lateral Tibial Plateau Defect in Minipig Model[J]. J. Mater. Sci. Technol., 2013, 29(6): 539-544.
[6] Dingchuan Xue, Yeoheung Yun, Zongqing Tan, Zhongyun Dong, Mark J. Schulz. In Vivo and In Vitro Degradation Behavior of Magnesium Alloys as Biomaterials[J]. J. Mater. Sci. Technol., 2012, 28(3): 261-267.
[7] Yibin Ren, Peng Wan, Feng Liu, Bingchun Zhang, Ke Yang. In vitro Study on a New High Nitrogen Nickel-free Austenitic Stainless Steel for Coronary Stents[J]. J. Mater. Sci. Technol., 2011, 27(4): 325-331.
[8] Weizhong Yang, Guangfu Yin, Dali Zhou, Jianwen Gu, Yadong Li, Hujun Zhang. Biocompatibility of Surface-Modified Biphasic Calcium Phosphate/Poly-L-Lactide Biocomposite in vitro and in vivo[J]. J. Mater. Sci. Technol., 2010, 26(8): 754-758.
[9] Ping Dong, Weichang Hao, Yayi Xia ,Guozu Da, Tianmin Wang. Comparison Study of Corrosion Behavior and Biocompatibility of Polyethyleneimine (PEI)/Heparin and Chitosan/Heparin Coatings on NiTi alloy[J]. J. Mater. Sci. Technol., 2010, 26(11): 1027-1031.
[10] S. Bindu,K.P. Sanosh,K. Smetana,A. Balakrishnan,T.N. Kim. An in vivo Evaluation of Ultra-fine Grained Titanium Implants[J]. J. Mater. Sci. Technol., 2009, 25(04): 556-560.
[11] Fang Geng,Lili Tan,Bingchun Zhang,Chunfu Wu,Yonglian He,Jingyu Yang,Ke Yang. Study on β-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material[J]. J. Mater. Sci. Technol., 2009, 25(01): 123-129.
[12] Wei WU, Xinjie LIU, Huimin HAN, Dazhi YANG, Shoudong LU. Electropolishing of NiTi for Improving Biocompatibility[J]. J. Mater. Sci. Technol., 2008, 24(06): 926-930 .
[13] Youxi LIN, Chenghui GAO, Ning LI. Influence of CaCO3 Whisker Content on Mechanical and Tribological Properties of Polyetheretherketone Composites[J]. J. Mater. Sci. Technol., 2006, 22(05): 584-588 .
[14] Jingxiao LIU, Fei SHI, Dazhi YANG. Characterization of Sol-gel-derived TiO2 and TiO2-SiO2 Films for Biomedical Applications[J]. J. Mater. Sci. Technol., 2004, 20(05): 550-554 .
[15] Ya LIU, Xianjin YANG, Minfang CHEN, Shengli ZHU, Zhenduo CUI. Deposition of Bioactive Layer on NiTi Alloy by Chemical Treatment[J]. J. Mater. Sci. Technol., 2002, 18(06): 534-537 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.