Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (10): 1919-1924    DOI: 10.1016/j.jmst.2018.02.005
Orginal Article Current Issue | Archive | Adv Search |
Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method
Zhongtao Chena, Xinli Guoa(), Long Zhua, Long Lib, Yuanyuan Liua, Li Zhaoa, Weijie Zhanga, Jian Chena, Yao Zhanga, Yuhong Zhaoc()
aJiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
bYinbang Clad Material Co., Ltd, Wuxi, 214145, China
cCollege of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
Download:  HTML  PDF(2841KB) 
Export:  BibTeX | EndNote (RIS)      

A new method to directly grow graphene on quartz glass substrate by atmospheric-pressure chemical vapor deposition (CVD) without using any catalyst was developed. The prime feature of this method is to build a vertical-glass model in the quartz tube to significantly increase the collision probability of the carbon precursors and reactive fragments between each other with the glass surface. The growth rate of high-quality graphene on glass remarkably increases compared with the conventional gas flow CVD technique. The optical transmittance and sheet resistance of the graphene glass can be readily adjusted by regulating growth time. When growth time is 35 min, the graphene glass presents an intriguing sheet resistance of about 1.48 kΩ sq-1 at a transmittance of 93.08% and exhibits an excellent hydrophobic performance. The method is simple and scalable, and might stimulate various potential applications of transparent and conductive graphene glass in practical fields.

Key words:  Graphene      Glass      Chemical vapor deposition      Metal-free      Sheet resistance     
Received:  18 October 2017      Published:  01 November 2018

Cite this article: 

Zhongtao Chen, Xinli Guo, Long Zhu, Long Li, Yuanyuan Liu, Li Zhao, Weijie Zhang, Jian Chen, Yao Zhang, Yuhong Zhao. Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J. Mater. Sci. Technol., 2018, 34(10): 1919-1924.

URL:     OR

Fig. 1.  Schematic illustration of graphene growth on glass substrate by vertical-glass model (The inset shows the vertical glass substrate set up).
Fig. 2.  SEM image of graphene on a quartz glass with growth time of 25 min (a) and 35 min (b). The bright area corresponds to the bare substrate made by a scratch.
Fig. 3.  High-magnification SEM images of graphene islands on glass surface with growth time of 15 min (a), 25 min (b), 35 min (c) and 45 min (d).
Fig. 4.  Representative Raman spectra of directly-grown graphene on glasses with different growth time.
Fig. 5.  AFM images of graphene grown on quartz glasses with growth time of 15 min (a), 25 min (b), 35 min (c) and 45 min (d) and corresponding line profiles.
Fig. 6.  UV-vis spectra of graphene films grown on quartz glass with different growth time and corresponding sheet resistance.
Fig. 7.  Raman spectra of directly-grown graphene on horizontal glass configuration with different growth times.
Fig. 8.  Photographs of bare glass (left) and graphene glass (right, growth time of 35 min) with drops of water (a), contact angles of water droplets on pristine glass (b) and graphene glass with growth time of 15 min (c), 25 min (d), 35 min (e), 45 min (f).
Fig. 9.  Photographs of assembled electrode device (a), lighted up blue LED indictor through transparent conductive glass (b) and water droplet (~5 μL) disappearing in about 5 min under 30 V input voltage (c).
[1] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff,V. Pellegrini, Science 347 (2015) 1-9.
[2] A.K. Geim, K.S. Novoselov, Nat. Mater. 6(2007) 183-191.
doi: 10.1038/nmat1849
[3] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Science 320 (2008) 1308.
doi: 10.1126/science.1156965
[4] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau,Nano Lett. 8(2008) 902-907.
doi: 10.1021/nl0731872
[5] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang,Nature 474 (2011) 64-67.
doi: 10.1038/nature10067
[6] C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385-388.
doi: 10.1126/science.1157996
[7] W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Energy Storage Mater. 2(2016)107-138.
doi: 10.1016/j.ensm.2015.10.002
[8] V.H.R. Souza, M.M. Oliveira, A.J.G. Zarbin, J. Power Sour. 348(2017)87-93.
doi: 10.1016/j.jpowsour.2017.02.064
[9] H. Lee, M. Kim, I. Kim, H. Lee, Adv. Mater. 28(2016) 4541-4548.
doi: 10.1002/adma.v28.22
[10] H. Tetsuka, A. Nagoya, T. Fukusumi, T. Matsui, Adv. Mater. 28(2016)4632-4638.
doi: 10.1002/adma.v28.23
[11] S. Lee, I. Jo, S. Kang, B. Jang, J. Moon, J.B. Park, S. Lee, S. Rho, Y. Kin, B.H. Hong,ACS Nano 11 (2017) 5318-5324.
doi: 10.1021/acsnano.7b00370
[12] X.Y. Zhang, S.H. Sun, X.J. Sun, Y.R. Zhao, L. Chen, Y. Yang, D.B. Li, Light Sci. Appl.5(2016) 2047-7538.
[13] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669.
doi: 10.1126/science.1102896
[14] G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3(2008) 270-274.
doi: 10.1038/nnano.2008.83
[15] C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. Heer, Science 312 (2006)1191-1196.
doi: 10.1126/science.1125925
[16] G.Q. Ding, Y. Zhu, S.M. Wang, Q. Gong, L. Sun, T.R. Wu, X.M. Xie, M.H. Jiang,Carbon 53 (2013) 321-326.
doi: 10.1016/j.carbon.2012.11.018
[17] A.L. Yu, X.Q. Wu, Y.P. Wang, X. Guo, L.M. Tong, Adv. Mater. 29(2017)1-25.
[18] X. Li, L. Colombo, R.S. Ruoff, Adv. Mater. 28(2016) 6449-6456.
doi: 10.1002/adma.201506426
[19] T.R. Wu, X.F. Zhang, Q.H. Yuan, J.C. Xue, G.Y. Lu, Z.H. Liu, H.S. Wang, H.M. Wang, F. Ding, Q.K. Yu, X.M. Xie, M.H. Jiang, Nat. Mater. 15(2016) 43-47.
doi: 10.1038/nmat4477
[20] H. Wang, G.Z. Wang, P.F. Bao, S.L. Yang, W. Zhu, X. Xie, W.J. Zhang, J. Am.Chem. Soc. 134(2012) 3627-3630.
doi: 10.1021/ja2105976
[21] A. Reina, H. Son, L.Y. Jiao, B. Fan, M.S. Dresselhaus, Z.F. Liu, J. Kong, J. Phys.Chem. C 112 (2008) 17741-17744.
doi: 10.1021/jp807380s
[22] J. Hwang, M. Kim, D. Campbell, H.A. Alsalman, J.Y. Kwak, S. Shivaraman, A.R. Woll, A.K. Singh, R.G. Hennig, S. Gorantla, M.H. Rummeli, M.G. Spencer, ACSNano 7 (2013) 385-395.
[23] J.Y. Chen, Y.L. Guo, Y.G. Wen, L.P. Huang, Y.Z. Xue, D.C. Geng, B. Wu, B.R. Luo,G. Yu, Y.Q. Liu, Adv. Mater. 25(2013) 992-997.
doi: 10.1002/adma.v25.7
[24] J.Y. Chen, Y.L. Guo, L.L. Jiang, Z.P. Xu, L.P. Huang, Y.Z. Xue, D.C. Geng, B. Wu,W.P. Hu, G. Yu, Y.Q. Liu, Adv. Mater. 26(2014) 1348-1353.
doi: 10.1002/adma.201304872
[25] J.Y. Sun, Y.B. Chen, X. Cai, B.J. Ma, Z.L. Chen, M.K. Priydarshi, K. Chen, T. Gao,X.J. Song, Q.Q. Ji, X.F. Guo, D.C. Zou, Y.F. Zhang, Nano Res. 8(2015) 3496-3504.
doi: 10.1007/s12274-015-0849-0
[26] L.C. Zhang, Z.W. Shi, Y. Wang, R. Yang, D.X. Shi, G.Y. Zhang, Nano Res. 4(2011)315-321.
doi: 10.1007/s12274-010-0086-5
[27] Z.L. Chen, B.L. Guan, X.D. Chen, Q. Zeng, L. Lin, R.Y. Wang, M.K. Priydarshi, J.Y. Sun, Z.P. Zhang, T.B. Wei, J.M. Li, Y.F. Zhang, Y.Y. Zhang, Z.F. Liu, Nano Res. 9(2016) 3048-3055.
doi: 10.1007/s12274-016-1187-6
[28] R. Mu˜noz, C. Gómez-Aleixandre, J. Phys.D-Appl. Phys. 47(2014) 1-9.
[29] J.Y. Sun, Y.B. Chen, M.K. Priydarshi, Z. Chen, A. Bachmatiuk, Z.Y. Zou, Z.L. Chen,X.J. Song, Y.F. Gao, M.H. Rummeli, Y.F. Zhang, Z.F. Liu, Nano Lett. 15(2015)5846-5854.
doi: 10.1021/acs.nanolett.5b01936
[30] Y.B. Chen, J.Y. Sun, J.F. Gao, F. Du, Q. Han, Y.F. Nie, Z.L. Chen, A. Bachmatiuk,M.K. Priydarshi, D.L. Ma, X.J. Song, X.S. Wu, C.Y. Xiong, M.H. Rummeli, F. Ding,Y.F. Zhang, Z.F. Liu, Adv. Mater. 47(2015) 7839-7846.
[31] S.C. Xu, B.Y. Man, S.Z. Jiang, C.S. Chen, C. Yang, M. Liu, X.G. Gao, Z.C. Sun, C. Zhang, CrystEngComm 15 (2013) 1840-1844.
doi: 10.1039/c3ce27029g
[32] X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, H.J. Dai, Nat.Nanotechnol. 3(2008) 538-542.
doi: 10.1038/nnano.2008.210
[33] G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3(2008) 270-274.
doi: 10.1038/nnano.2008.83
[1] Fangyu Qin, Wenlong Xiao, Fengshuang Lu, Yuanchao Ji, Xinqing Zhao, Xiaobing Ren. Resolution of a discrepancy of magnetic mechanism for Elinvar anomaly in Fe-Ni based alloys[J]. 材料科学与技术, 2019, 35(3): 396-401.
[2] M. Jalili, H. Ghanbari, S.Moemen Bellah, R. Malekfar. High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation[J]. 材料科学与技术, 2019, 35(3): 292-299.
[3] Kai Li, Fangliang Gao, Yu-Jen Chou, Kaixiang Shen, Guoqiang Li. Microdomain atomic structure of Zr50Pd40Al10 metallic glasses and its formation mechanism[J]. 材料科学与技术, 2019, 35(3): 248-253.
[4] Xin Lin, Yuanyuan Zhang, Gaolin Yang, Xuehao Gao, Qiao Hu, Jun Yu, Lei Wei, Weidong Huang. Microstructure and compressive/tensile characteristic of large size Zr-based bulk metallic glass prepared by laser solid forming[J]. 材料科学与技术, 2019, 35(2): 328-335.
[5] Manash Jyoti Deka, Devasish Chowdhury. Surface charge induced tuning of electrical properties of CVD assisted graphene and functionalized graphene sheets[J]. 材料科学与技术, 2019, 35(1): 151-158.
[6] L.Y. Guo, X. Wang, K.C. Shen, K.B. Kim, S. Lan, X. WangL., W.M. Wang. Structure modification and recovery of amorphous Fe73.5Si13.5B9Nb3Cu1 magnetic ribbons after autoclave treatment: SAXS and thermodynamic analysis[J]. 材料科学与技术, 2019, 35(1): 118-126.
[7] Chaoxuan Shen, Han Wang, Tengxin Zhang, You Zeng. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites[J]. 材料科学与技术, 2019, 35(1): 36-43.
[8] Igor Iatsunskyi, Margarita Baitimirova, Emerson Coy, Luis Yate, Roman Viter, Arunas Ramanavicius, Stefan Jurga, Mikhael Bechelany, Donats Erts. Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties[J]. 材料科学与技术, 2018, 34(9): 1487-1493.
[9] Khalid Hussain Thebo, Xitang Qian, Qinwei Wei, Qing Zhang, Hui-Ming Cheng, Wencai Ren. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation[J]. 材料科学与技术, 2018, 34(9): 1481-1486.
[10] Ning Wang, Ye Pan, Shikai Wu. Relationship between dealloying conditions and coarsening behaviors of nanoporous copper fabricated by dealloying Cu-Ce metallic glasses[J]. 材料科学与技术, 2018, 34(7): 1162-1171.
[11] Jun Ma, Shaochun Tang, Junaid Ali Syed, Dongyun Su, Xiangkang Meng. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure[J]. 材料科学与技术, 2018, 34(7): 1103-1109.
[12] Sima Kashi, Rahul K. Gupta, Nhol Kao, S. Ali Hadigheh, Sati N. Bhattacharya. Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices[J]. 材料科学与技术, 2018, 34(6): 1026-1034.
[13] Yu Gao, Wuzhu Sun, Weiyi Yang, Qi Li. Palladium nanoparticles supported on amine-functionalized glass fiber mat for fixed-bed reactors on the effective removal of hexavalent chromium by catalytic reduction[J]. 材料科学与技术, 2018, 34(6): 961-968.
[14] Li D., Zhu Z.W., Wang A.M., Fu H.M., Li H., Zhang H.W., Zhang H.F.. New ductile laminate structure of Ti-alloy/Ti-based metallic glass composite with high specific strength[J]. 材料科学与技术, 2018, 34(4): 708-712.
[15] Wang Yinxiao, Yao Jiahao, Li Yi. Glass formation adjacent to the intermetallic compounds in Cu-Zr binary system[J]. 材料科学与技术, 2018, 34(4): 605-612.
[1] Fuan HUA, Yuansheng YANG, Dayong GUO, Wenhui TONG, Zhuangqi HU. Elasto-Plastic FEM Analysis of Residual Stress in Spun Tube[J]. J Mater Sci Technol, 2004, 20(04): 379 -382 .
[2] Rangsu LIU, Jiyong LI, K.J.Dong, R.P.Zou, A.B.Yu. Formation and Evolution Mechanisms of Nano-clusters in a Large-scale Liquid Metal System during Solidification Processes[J]. J Mater Sci Technol, 2005, 21(Supl.1): 37 -41 .
[3] By SHEN Huanxiang GAO Shiyou SU Shenggui ** Dept.of Materials Engineering,Yanshan University,Qinhuangdao.066004,China+ To whom correspondence should be addressed. Superplasticity in Aluminium Brass(HAl 66-6-3-2)[J]. J Mater Sci Technol, 1992, 8(6): 440 -442 .
[4] Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J]. J. Mater. Sci. Technol., 2019, 35(4): 631 -636 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.