J. Mater. Sci. Technol. ›› 2025, Vol. 231: 11-19.DOI: 10.1016/j.jmst.2024.12.069
• Research article • Previous Articles Next Articles
Yuyang Lia,1, Peng Wanga,1, Qiaofu Shib, Fucheng Hua, Xinwei Zhanga, Xue Xua, Jun Zhanga, Jie Zhengb,*, Yunze Longa,*
Received:2024-11-03
Revised:2024-12-19
Accepted:2024-12-22
Published:2025-10-01
Online:2025-03-01
Contact:
*E-mail addresses: About author:1 These authors contributed equally to this work.
Yuyang Li, Peng Wang, Qiaofu Shi, Fucheng Hu, Xinwei Zhang, Xue Xu, Jun Zhang, Jie Zheng, Yunze Long. Dynamic chloride ion repulsion facilitated by graphene quantum dots for stable electrolytic seawater oxidation[J]. J. Mater. Sci. Technol., 2025, 231: 11-19.
| [1] P. Wang, J. Zheng, X. Xu, Y.Q. Zhang, Q.F. Shi, Y. Wan, S. Ramakrishna, J. Zhang, L.Y. Zhu, T. Yokoshima, Y. Yamauchi, Y.Z. Long, Adv. Mater. 36(2024) 2404806. [2] H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan, W. Jiang, L. Zhu, Y. Wang, D. Yang, Z. Shao, Nature 612 (2022) 673-678. [3] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Chem. Soc. Rev. 46(2017) 337-365. [4] X. Du, Y. Ding, X. Zhang, Green Energy Environ. 8(2023) 798-811. [5] Z.X. Cai, H. Goou, Y. Ito, T. Tokunaga, M. Miyauchi, H. Abe, T. Fujita, Chem. Sci. 12(2021) 11306-11315. [6] Q. Dai, X. He, Y. Yao, K. Dong, X. Liu, X. Guo, J. Chen, X. Fan, D. Zheng, Y. Luo, S. Sun, L. Li, W. Chu, A. Farouk, M.S. Hamdy, X. Sun, B. Tang, Nano Res. 17(2024) 6820-6825. [7] J.M. Zhang, X.L. Cao, Y.F. Jiang, S.F. Hung, W. Liu, H.B. Yang, C.Q. Xu, D.S. Li, T.Y. Zhang, Y.J. Li, J. Li, B. Liu, Chem. Sci. 13(2022) 12114-12121. [8] C. Yang, Z. Cai, J. Liang, K. Dong, Z. Li, H. Sun, S. Sun, D. Zheng, H. Zhang, Y. Luo, Y. Yao, Y. Wang, Y. Ren, Q. Liu, L. Li, W. Chu, X. Sun, B. Tang, Nano Res. 17(2024) 5786-5794. [9] S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, ACS Energy Lett. 4(2019) 933-942. [10] S.J. Guo, S. Zhang, S.H. Sun, Angew. Chem. Int. Edit. 52(2013) 8526-8544. [11] M.A. Khan, T. Al-Attas, S. Roy, M.M. Rahman, N. Ghaffour, V. Thangadurai, S. Larter, J.G. Hu, P.M. Ajayan, M.G. Kibria, Energy Environ. Sci. 14(2021) 4831-4839. [12] B.H. Cui, Y. Shi, G. Li, Y.N. Chen, W. Chen, Y.D. Deng, W.B. Hu, Acta Phys.-Chim.Sin. 38(2022) 2106010. [13] X. Guo, X. He, X. Liu, S. Sun, H. Sun, K. Dong, T. Li, Y. Yao, T. Xie, D. Zheng, Y. Luo, J. Chen, Q. Liu, L. Li, W. Chu, Z. Jiang, X. Sun, B. Tang, Small 20 (2024) 2400141. [14] Z.M. He, C.X. Zhang, S.Q. Guo, P. Xu, Y. Ji, S.W. Luo, X. Qi, Y.D. Liu, N.Y. Cheng, S.X. Dou, Y.X. Wang, B.W. Zhang, Chem. Sci. 15(2024) 1123-1131. [15] Z. Cai, J. Liang, Z. Li, T. Yan, C. Yang, S. Sun, M. Yue, X. Liu, T. Xie, Y. Wang, T. Li, Y. Luo, D. Zheng, Q. Liu, J. Zhao, X. Sun, B. Tang, Nat. Commun. 15(2024) 6624. [16] Y. Cao, T. Wang, X. Li, L. Zhang, Y. Luo, F. Zhang, A.M. Asiri, J. Hu, Q. Liu, X. Sun, Inorg. Chem. Front 8 (2021) 3049-3054. [17] J. Zhou, L. Xu, H. Gai, N. Xu, Z. Ren, X. Hou, Z. Chen, Z. Han, D. Sarker, S.V. Levchenko, M. Huang, Angew. Chem. Int. Edit. 63(2024) e202409449. [18] J. Zhou, F. Qiao, Z. Ren, X. Hou, Z. Chen, S. Dai, G. Su, Z. Cao, H. Jiang, M. Huang, Adv. Funct. Mater. 34(2023) 2304380. [19] X. Wang, Z. Li, S. Sun, H. Sun, C. Yang, Z. Cai, H. Zhang, M. Yue, M. Zhang, H. Wang, Y. Yao, Q. Liu, L. Li, W. Chu, J. Hu, X. Sun, B. Tang, J. Colloid Interface Sci. 662(2024) 596-603. [20] H.X. Liao, X.D. Zhang, S.W. Niu, P.F. Tan, K.J. Chen, Y. Liu, G.M. Wang, M. Liu, J. Pan, Appl. Catal. B-Environ. 307(2022) 121150. [21] J. Zhou, Z. Han, X. Wang, H. Gai, Z. Chen, T. Guo, X. Hou, L. Xu, X. Hu, M. Huang, S.V. Levchenko, H. Jiang, Adv. Funct. Mater. 31(2021) 2102066. [22] Z. Zhao, H. Zhao, X. Du, X. Zhang, Int. J. Hydrogen Energy 88 (2024) 313-321. [23] Y. Wang, S. Liu, X. Du, X. Zhang, Int. J. Hydrogen Energy 88 (2024) 450-461. [24] T. Ni, X. Hou, J. Zhou, C. Zhang, S. Dai, L. Chu, H. Wang, H. Jiang, M. Huang, Adv. Funct. Mater. 35(2024) 2413856. [25] L. Xiao, T. Yang, C. Cheng, X. Du, Y. Zhao, Z. Liu, X. Zhao, J. Zhang, M. Zhou, C. Han, S. Liu, Y. Zhao, Y. Yang, H. Liu, C. Dong, J. Yang, Chem. Eng. J. 485(2024) 150044. [26] C. Wang, X. Shao, J. Pan, J. Hu, X. Xu, Appl. Catal. B-Environ. 268(2020) 118435. [27] V.S. Saji, C.W. Lee, ChemSusChem 5 (2012) 1146-1161. [28] J.D. Henderson, B. Almusned, M. Momeni, S. Anderson, V. Dehnavi, D. Zagidulin, D.W. Shoesmith, J.J. Noël, J. Electrochem. Soc. 167(2020) 131512. [29] S.X. Zhang, Y.A. Wang, S.Y. Li, Z.F. Wang, H.C. Chen, L. Yi, X. Chen, Q.H. Yang, W.W. Xu, A.Y. Wang, Z.Y. Lu, Nat. Commun. 14(2023) 4822. [30] L. He, Z. Cai, D. Zheng, L. Ouyang, X. He, J. Chen, Y. Li, X. Guo, Q. Liu, L. Li, W. Chu, S. Zhu, X. Sun, B. Tang, J. Mater. Chem. A 12 (2024) 2680-2684. [31] J. Liang, J. Li, H. Dong, Z. Li, X. He, Y. Wang, Y. Yao, Y. Ren, S. Sun, Y. Luo, D. Zheng, J. Li, Q. Liu, F. Luo, T. Wu, G. Chen, X. Sun, B. Tang, Nat. Commun. 15(2024) 6208. [32] H. Wang, Z. Li, S. Hong, C. Yang, J. Liang, K. Dong, H. Zhang, X. Wang, M. Zhang, S. Sun, Y. Yao, Y. Luo, Q. Liu, L. Li, W. Chu, M. Du, F. Gong, X. Sun, B. Tang, Small 20 (2024) 2311431. [33] Y.C. Yao, S.J. Sun, H. Zhang, Z.X. Li, C.X. Yang, Z.W. Cai, X. He, K. Dong, Y.L. Luo, Y. Wang, Y.C. Ren, Q. Liu, D.D. Zheng, W.H. Zhuang, B. Tang, X.P. Sun, W.C. Hu, J. Energy Chem. 91(2024) 306-312. [34] W.R. Zheng, L.Y.S. Lee, K.Y. Wong, Nanoscale 13 (2021) 15177-15187. [35] S.X. Zhang, W.W. Xu, H.C. Chen, Q.H. Yang, H. Liu, S.J. Bao, Z.Q. Tian, E. Slavcheva, Z.Y. Lu, Adv. Mater. 36(2024) 2311322. [36] J.X. Guo, Y. Zheng, Z.P. Hu, C.Y. Zheng, J. Mao, K. Du, M. Jaroniec, S.Z. Qiao, T. Ling, Nat. Energy 8 (2023) 264-272. [37] S. Jeong, K. Hu, T. Ohto, Y. Nagata, H. Masuda, J.-I. Fujita, Y.Ito, ACS Catal. 10(2019) 792-799. [38] Z. Du, S.L. Shen, Z.H. Tang, J.H. Yang, New Carbon Mater. 36(2021) 449-467. [39] J.J. Niu, H. Gao, W.F. Tian, Prog. Chem. 26(2014) 270-276. [40] W. Zhang, L. Li, S. Li, J. Ma, C. Liu, Y. Bao, Acta Mater. Compos. Sin. 39(2022) 3104-3120. [41] Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao, C. Zhong, J. Zhang, X. Han, W. Hu, Y. Zhang, K. Zaghib, Y. Wang, Y. Deng, Adv. Mater. 32 (2020) 2000231. [42] R. Xu, R. Wu, Y.M. Shi, J.F. Zhang, B. Zhang, Nano Energy 24 (2016) 103-110. [43] E. Kamali-Heidari, Z.L. Xu, M.H. Sohi, A. Ataie, J.K. Kim, Electrochim. Acta 271 (2018) 507-518. [44] H. Xu, Y. Liao, Z.F. Gao, Y. Qing, Y.Q. Wu, L.Y. Xia, J. Mater. Chem. A 9 (2021) 3418-3426. [45] Y. Wang, X. Li, Z. Huang, H. Wang, Z. Chen, J. Zhang, X. Zheng, Y. Deng, W. Hu, Angew. Chem. Int. Edit. 62(2023) e202215256. [46] Q.C. Xu, Y. Liu, H. Jiang, Y.J. Hu, H.L. Liu, C. Li, Adv. Energy Mater. 9(2019) 1802553. [47] X. Zhang, Z.M. Luo, P. Yu, Y.Q. Cai, Y.H. Du, D.X. Wu, S. Gao, C.L. Tan, Z. Li, M.Q. Ren, T. Osipowicz, S.M. Chen, Z. Jiang, J. Li, Y. Huang, J. Yang, Y. Chen, C.Y. Ang, Y.L. Zhao, P. Wang, L. Song, X.J. Wu, Z. Liu, A. Borgna, H. Zhang, Nat. Catal. 1(2018) 460-468. [48] X. Zheng, Y. Zhang, H. Liu, D. Fu, J. Chen, J. Wang, C. Zhong, Y. Deng, X. Han, W. Hu, Small 14 (2018) 1803666. [49] X.J. Chen, D. Chen, X.Y. Guo, R.M. Wang, H.Z. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 18774-18781. [50] G.Y. Huang, S.M. Xu, G. Xu, L.Y. Li, L.F. Zhang, Trans. Nonferrous Met. Soc. China 19 (2009) 389-393. [51] B.S. Singu, R.K. Chitumalla, D. Mandal, Y. Kim, G.H. Kim, H.T. Chung, J. Jang, H. Kim, Appl. Catal. B-Environ. 328(2023) 122421. [52] L. Han, S.J. Dong, E.K. Wang, Adv. Mater. 28(2016) 9266-9291. [53] Y.C. Li, X.Y. Wu, J.P. Wang, H.X. Wei, S.Y. Zhang, S.L. Zhu, Z.Y. Li, S.L. Wu, H. Jiang, Y.Q. Liang, Electrochim. Acta 390 (2021) 138833. [54] R. Fan, C. Liu, Z. Li, H. Huang, J. Feng, Z. Li, Z. Zou, Nat. Sustain. 7(2024) 158-167. [55] J.C. Jia, L.H. Zhao, Y. Chang, M.L. Jia, Z.H. Wen, Ceram. Int. 46(2020) 10023-10028. [56] J.O.M. Bockris, T. Otagawa, J. Phys. Chem. C 87 (1983) 2960-2971. [57] W.W. Liu, M. Li, G.P. Jiang, G.R. Li, J.B. Zhu, M.L. Xiao, Y.F. Zhu, R. Gao, A.P. Yu, M. Feng, Z.W. Chen, Adv. Energy Mater. 10(2020) 2001275. [58] X.W. Wang, G.Z. Sun, N. Li, P. Chen, Chem. Soc. Rev. 45(2016) 2239-2262. [59] W. Liu, J. Yu, T. Li, S. Li, B. Ding, X. Guo, A. Cao, Q. Sha, D. Zhou, Y. Kuang, X. Sun, Nat. Commun. 15(2024) 4712. [60] P. Li, S. Zhao, Y. Huang, Q. Huang, B. Xi, X. An, S. Xiong, Adv. Energy Mater. 14(2023) 2303360. |
| [1] | Jing Zhao, Tianqi Li, Shang Gao, Zhixuan Wei, Xiaoquan Han, Jiaming Yang, Shiyu Xia, Qiang Ji, Hongji Xiao, Fei Du. Cubic crystal-structured Ge2Sb2Te5 with cation vacancies for enhanced lithium/sodium ion storage [J]. J. Mater. Sci. Technol., 2025, 231(0): 125-133. |
| [2] | Zhijun Wu, Chenchen Li, Panyu Gao, Xin Zhang, Yue Lin, Xuebin Yu, Yongfeng Liu, Wenping Sun, Yinzhu Jiang, Mingxia Gao, Hongge Pan, Yaxiong Yang. Nitrogen-based redox couple regulated anionic redox to long-term cycling stability of Li and Mn-rich layered oxide cathode for Li-ion batteries [J]. J. Mater. Sci. Technol., 2025, 215(0): 157-166. |
| [3] | Panmei Liu, Shuo Ma, Jianbo Zhang, Yuan Huang, Yongchang Liu, Zumin Wang. Formation of ultra-stable Au nanoparticles in Au-ZrO2 nanocomposites [J]. J. Mater. Sci. Technol., 2025, 217(0): 104-115. |
| [4] | Mohsen Tamtaji, William A. Goddard III, Ziyang Hu, GuanHua Chen. High-throughput screening of axially bonded dual atom catalysts for enhanced electrocatalytic reactions: The effect of van der Waals interaction [J]. J. Mater. Sci. Technol., 2025, 218(0): 126-134. |
| [5] | Yafang Zhang, Lairong Xiao, Zhenyang Cai, Ruiyang Xiao, Maokun Yin, Xing Li, Yiqian Fu, Xiangchen Xiao, Yuxiang Jiang, Zhenwu Peng, Sainan Liu, Xiaojun Zhao, Wei Li, Miao Song. High-performance Nb alloy featuring a hierarchical carbides configuration for elevated-temperature applications [J]. J. Mater. Sci. Technol., 2025, 218(0): 263-278. |
| [6] | Yangxi Yan, Yun Qiao, Longlong Wang, Li Jin, Maolin Zhang, Zhimin Li, Mo Zhao, Dongyan Zhang. A novel strategy for obtaining lead-based piezoelectric ceramics with giant piezoelectricity and high-temperature stability through the construction of “slush-like” polar states [J]. J. Mater. Sci. Technol., 2025, 221(0): 25-35. |
| [7] | Wanfeng Li, Kaixuan Wang, Weihua Li. Assembly of WO3-Nb2O5-ZnIn2S4 with embedded quasi-planar heterojunction characteristics and its efficient and stable dark-state photoelectrochemical cathodic protection performance [J]. J. Mater. Sci. Technol., 2025, 221(0): 117-128. |
| [8] | Yuanfei Su, Shuzhan Zhang, Shengxuan Jiao, Xianbo Shi, Wei Yan, Lijian Rong. Nitrogen enhances microstructural thermal stability of Si-modified Fe-Cr-Ni austenitic stainless steel [J]. J. Mater. Sci. Technol., 2025, 226(0): 270-289. |
| [9] | Yubo Li, Xiaopei Wang, Jingtao Tang, Chi Zhang, Zhigang Yang, Hao Chen. On the role of Al or Ti alloying in additively manufactured IN718 alloys [J]. J. Mater. Sci. Technol., 2025, 227(0): 216-230. |
| [10] | Xinhao Zhang, Xiaoxin Zhang, Jun Zhang, Qingzhi Yan. Enhanced high-temperature stability in CuCrZrY alloys: Reduce d precipitate coarsening and recrystallization [J]. J. Mater. Sci. Technol., 2025, 229(0): 1-13. |
| [11] | S.W. Park, H.J. Lee, K.A. Nirmal, T.H. Kim, D.H. Kim, J.Y. Choi, J.S. Oh, J.M. Joo, T.G. Kim. Phase-change heterostructure with HfTe2 confinement sublayers for enhanced thermal efficiency and low-power operation through Joule heating localization [J]. J. Mater. Sci. Technol., 2025, 204(0): 104-114. |
| [12] | Shao-You Zhang, Yuan-Ting Mo, Zhen-Ming Hua, Xu Liu, Ze-Tian Liu, Hui-Yuan Wang. Improving long-term thermal stability in twin-roll cast Al-Mg-Si-Cu alloys by optimizing Mg/Si ratios [J]. J. Mater. Sci. Technol., 2025, 206(0): 164-175. |
| [13] | Yuling Xu, Tiantian Zhu, Haiyang Xu, Xiangyu Zhao. Constructing in-situ polymerized electrolyte for room-temperature solid-state chloride ion battery with enhanced electrochemical performance [J]. J. Mater. Sci. Technol., 2025, 206(0): 185-192. |
| [14] | Ji Yeong Lee, Hyeonseok Kwon, Jae Heung Lee, Jihye Kwon, Jaemin Wang, Jae Wung Bae, Jongun Moon, Byeong-Joo Lee, Yoon-Uk Heo, Hyoung Seop Kim. Regulation of cryogenic mechanical behaviors of C-added non-equiatomic CoCrFeNiMo ferrous medium-entropy alloy via control of initial microstructure [J]. J. Mater. Sci. Technol., 2025, 208(0): 141-151. |
| [15] | Mengdi Gan, Liping Lai, Jiankun Wang, Jun Wang, Lin Chen, Jingjin He, Jing Feng, Xiaoyu Chong. Suppressing the oxygen-ionic conductivity and promoting the phase stability of the high-entropy rare earth niobates via Ta substitution [J]. J. Mater. Sci. Technol., 2025, 209(0): 79-94. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
