J. Mater. Sci. Technol. ›› 2024, Vol. 188: 131-143.DOI: 10.1016/j.jmst.2023.10.060
• Research Article • Previous Articles Next Articles
Zhenkun Liua, Fei Jina, Xin Lib,*, Peng Zhangc, Zhiliang Jina,*
Received:
2023-08-15
Revised:
2023-09-29
Accepted:
2023-10-23
Published:
2024-07-20
Online:
2024-01-09
Contact:
*E-mail addresses: xinli@scau.edu.cn (X. Li), zl-jin@nun.edu.cn (Z. Jin).
Zhenkun Liu, Fei Jin, Xin Li, Peng Zhang, Zhiliang Jin. Morphological effects of WO3 in metal sulfide-based S-Scheme heterojunctions for boosting photocatalytic hydrogen production[J]. J. Mater. Sci. Technol., 2024, 188: 131-143.
[1] Z.L. Jin, H.Y. Li, J.K. Li, Chin. J. Catal. 43 (2022) 303-315. [2] H.Y. Li, H.M. Gong, Z.L. Jin, Acta Phys Chim. Sin. 38 (2022) 2201037. [3] W. Huang, Q. He, Y.P. Hu, Y.G. Li, Angew. Chem Int. Edit. 58 (2019) 8676-8680. [4] Y. Cao, H.Q. Gou, P.F. Zhu, Z.L. Jin, Chinese J. Struct. Chem. 41 (2022) 2206079. [5] G.W. Han, F.Y. Xu, B. Cheng, Y.J. Li, J.G. Yu, L.Y. Zhang, Acta Phys Chim. Sin. 38 (2022) 2112037. [6] G.R. Wang, Y.K. Quan, K.C. Yang, Z.L. Jin, J. Mater. Sci.Technol. 121 (2022) 28-39. [7] X.Y. Wang, Y.J. Li, X. Guo, Z.L. Jin, J. Phys. Chem. C 126 (2022) 13015-13024. [8] K.C. Yang, T.X. Liu, D.Z. Xiang, Y.J. Li, Z.L. Jin, Sep. Purif. Technol. 298 (2022) 121564. [9] G.F. Liao, C.X. Li, B.Z. Fang, Matter 5 (2022) 1635-1637. [10] Z.K. Liu, Y.J. Li, Z.L. Jin, J. Mater. Chem. C 11 (2023) 9327-9340. [11] H. Liu, Y.Y. Zhang, Y.J. Li, M.X. Yang, Y.B. Li, Z.L. Jin, ChemCatChem 14 (2022) e202200413. [12] K.C. Yang, H.Y. Zhang, T.X. Liu, D.Z. Xiang, Y.J. Li, Z.L. Jin, J. Electroanal. Chem. 922 (2022) 116749. [13] S.W. Du, S.Q. Lin, K.K. Ren, C.H. Li, F.X. Zhang, Appl. Catal. B-Environ. 328 (2023) 122503. [14] L.Y. Zhang, J.J. Zhang, H.G. Yu, J.G. Yu, Adv. Mater. 34 (2022) 2107668. [15] L.J. Zhang, X.Q. Hao, J.K. Li, Y.P. Wang, Z.L. Jin, Chin. J. Catal. 41 (2020) 82-94. [16] L.X. Wang, C.B. Bie, J.G. Yu, Trends Chem. 4 (2022) 973-983. [17] C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem Int. Edit. 62 (2023) e202218688. [18] J. Zhang, L. Wang, M. Mousavi, J.B. Ghasemi, J.G. Yu, Chinese J. Struct. Chem. 41 (2022) 2206003. [19] Z.M. Jiang, Q. Chen, Q.Q. Zheng, R.C. Shen, P. Zhang, X. Li, Acta Phys Chim. Sin. 37 (2021) 2010059. [20] Y.N. Liu, X.H. Ma, X.D. Jiang, Z.L. Jin, Nanoscale 14 (2022) 12077-12089. [21] C.X. Li, L.J. Han, R.J. Liu, H.H. Li, S.J. Zhang, G.J. Zhang, J. Mater. Chem. 22 (2012) 23815. [22] Z.L. Jin, T. Li, L.J. Zhang, X.P. Wang, G.R. Wang, X.Q. Hao, J. Mater. Chem. A 10 (2022) 1976-1991. [23] J. Zou, G.D. Liao, J.Z. Jiang, Z.G. Xiong, S.S. Bai, H.T. Wang, P.X. Wu, P. Zhang, X. Li, Chinese J. Struct. Chem. 41 (2022) 2201025. [24] Y. He, Z.P. Yang, J.G. Yu, D.F. Xu, C.Y. Liu, Y. Pan, W. Macyk, F.Y. Xu, J. Mater. Chem. A 11 (2023) 14860. [25] D.L. Feng, Z.Y. Zhu, L.L. Du, X.X. Xing, C. Wang, J. Chen, Y.T. Tian, D.C. Yang, Rare Metals 40 (2021) 1642-1650. [26] R. Lin, J.W. Wan, Y. Xiong, K.L. Wu, W.C. Cheong, G. Zhou, D.S. Wang, Q. Peng, C. Chen, Y.D. Li, J. Am. Chem.Soc. 140 (2018) 9078-9082. [27] X.H. Li, T. Li, H. Liu, K. Wang, X. Guo, Y.J. Li, Z. Jin, Int. J. Hydrog. Energy 47 (2022) 11561. [28] J.L. Dominguez-Aruizu, J.A. Jimenez-Miramontes, J.M. Salinas-Gutierrez, M.J. Melendez-Zaragoza, A. Lopez-Ortiz, V. Collins-Martinez, Int. J. Hydrog. Energy 42 (2017) 30242. [29] R.S. Zhu, F. Tian, S.N. Che, G. Cao, F. Ouyang, Renew. Energy 113 (2017) 1503-1514. [30] Y.C. Nie, F. Yu, L.C. Wang, Q.J. Xing, X. Liu, Y. Pei, J.P. Zou, W.L. Dai, Y. Li, S.L. Suib, Appl. Catal. B Environ. 227 (2018) 312-321. [31] Z. Chen, X. Yu, Q.H. Zhu, T.T. Fan, Q.L. Wu, L.Z. Zhang, J.H. Li, W.P. Fang, X.D. Yi, Carbon N Y 139 (2018) 189-194. [32] J.M. Chen, J.Y. Chen, Y.W. Li, J. Mater. Chem. A 5 (2017) 24116. [33] J.S. Cheng, Z. Hu, Q. Li, X.F. Li, S. Fang, X.F. Wu, M. Li, Y.B. Ding, B. Liu, C.J. Yang, L.L. Wen, Y. Liu, K.L. Lv, Appl. Catal. B-Environ. 245 (2019) 197-206. [34] Y.X. Chen, W. Zhong, F. Chen, P. Wang, J.J. Fan, H.G. Yu, J. Mater. Sci.Technol. 121 (2022) 19-27. [35] X.F. Ning, W.L. Zhen, Y.Q. Wu, G.X. Lu, Appl. Catal. B-Environ. 226 (2018) 373-383. [36] A.S. Hainer, J.S. Hodgins, V. Sandre, M. Vallieres, A.E. Lanterna, J.C. Scaiano, ACS Energy Lett. 3 (2018) 542-545. [37] Z.Z. Liang, R.C. Shen, P. Zhang, Y.J. Li, N. Li, X. Li, Chin. J. Catal. 43 (2022) 2581-2591. [38] S.A. Rawool, M.R. Pai, A.M. Banerjee, R.D. Bapat, C. Nayak, A.K. Tripathi, Int. J. Hydrog. Energy 43 (2018) 1271-1284. [39] J.X. Bai, R.C. Shen, Z.M. Jiang, P. Zhang, Y.J. Li, X. Li, Chin. J. Catal. 43 (2022) 359-369. [40] Y.G. Lei, Kim Hoong Ng, Y.C. Zhu, Y.Z. Zhang, Z.X. Li, S. Xu, J.Y. Huan, J. Hu, Z. Chen, W.L. Cai, Y.K. Lai, Chem. Eng. J. 452 (2023) 139325. [41] T.M. Di, Q.R. Deng, G.M. Wang, S.G. Wang, L.X. Wang, Y.H. Ma, J. Mater. Sci.Technol. 124 (2022) 209-216. [42] M.H. Xiong, J.T. Yan, B. Chai, G.Z. Fan, G.S. Song, J. Mater. Sci.Technol. 56 (2020) 179-188. [43] F. Qiu, Z.J. Han, J.J. Peterson, M.Y. Odoi, K.L. Sowers, T.D. Krauss, Nano Lett. 16 (2016) 5347-5352. [44] S. Liu, X.Y. Guo, W.J. Wang, Y. Yang, C.T. Zhu, C.Y. Li, W.H. Lin, Q.H. Tian, Y. Liu, Appl. Catal. B-Environ. 303 (2022) 120909. [45] H.L. Yang, J.Q. Tang, Y. Luo, X.Q. Zhan, Z. Liang, L. Jiang, H.L. Hou, W.Y. Yang, Small 17 (2021) 2102307. [46] J. Zhang, L.T. Li, M. Du, Y. Cui, Y.H. Li, W. Yan, H.J. Huang, X.A. Li, X.B. Zhu, Small 19 (2023) 2300402. [47] X.H. Li, Y.J. Li, X. Guo, Z.L. Jin, Front. Chem. Sci. Eng. 17 (2023) 606-616. [48] X.P. Wang, Z.L. Jin, X. Li, Rare Metals 42 (2023) 1494-1507. [49] Z.B. Fan, X. Guo, M.X. Yang, Z.L. Jin, Chin. J. Catal. 43 (2022) 2708-2719. [50] M.H. Liu, G.G. Zhang, X.C. Liang, Z.M. Pan, D.D. Zheng, S.B. Wang, Z.Y. Yu, Y.D. Hou, X.C. Wang, Angew. Chem Int. Edit. 62 (2023) e202304694. [51] D. Li, Y. Liu, W.W. Shi, C.Y. Shao, S.Y. Wang, C.M. Ding, T.F. Liu, F.T. Fan, J.Y. Shi, C. Li, ACS Energy Lett. 4 (2019) 825-831. [52] X. Yu, J.L. Huang, J.J. Zhao, S.F. Liu, D.D. Xiang, Y.T. Tang, J. Li, Q.H. Guo, X.Q. Ma, J.W. Zhao, Chem. Eng. J. 403 (2021) 126359. [53] L. Dong, X.F. Wang, P. Wang, H.G. Yu, J. Mater. Chem. C 10 (2022) 6402-6410. [54] Y.J. Yuan, Z.K. Shen, P. Wang, Z. Li, L. Pei, J. Zhong, Z. Ji, Z.T. Yu, Z. Zou, Appl. Catal. B-Environ. 260 (2020) 118179. [55] M.Y. Zhang, S.Y. Nie, T. Cheng, Y. Feng, C.C. Zhang, L. Zheng, L. Wu, W.C. Hao, Y. Ding, Nano Energy 90 (2021) 106635. [56] Y. Cao, H.W. Qin, Y.P. Chen, J.F. Hu, Appl. Surf. Sci. 495 (2019) 143532. [57] X.Y. Kuang, X.Y. Deng, Y.W. Ma, J.Y. Zeng, B.Y. Zi, Y.M. Zhang, J. Zhang, B. Xiao, Q.J. Liu, J. Mater. Chem. C 10 (2022) 6341-6347. [58] Z.K. Liu, Z.L. Jin, Catal. Sci. Technol. 13 (2023) 1074-1086. [59] B.C. Patra, S. Khilari, R.N. Manna, S. Mondal, D. Pradhan, A. Pradhan, A. Bhau-mik, ACS Catal. 7 (2017) 6120-6127. [60] Z. Chen, J.F. Lu, Y.J. Ai, Y.F. Ji, T. Adschiri, L.J. Wan, ACS Appl. Mater. Interfaces 8 (2016) 35132. [61] Y.P. Wu, W. Zhou, J. Zhao, W.W. Dong, Y.Q. Lan, D.S. Li, C. Sun, X. Bu, Angew. Chem Int. Edit. 56 (2017) 13001. [62] S. Anantharaj, S. Noda, Mater. Today Energy 29 (2022) 101123. [63] B. Sarac, T. Karazehir, M. Muehlbacher, A.S. Sarac, J. Eckert, Electrocatalysis 11 (2020) 94-109. [64] S. Anantharaj, S. Noda, Chemelectrochem 7 (2020) 2297-2308. [65] Y.J. Xiao, Y. Qi, X.L. Wang, X.Y. Wang, F.X. Zhang, C. Li, Adv. Mater. 30 (2018) 1803401. [66] Q.L. Xu, S. Wageh, A.A. Al-Ghamdi, X.Li, J. Mater. Sci. Technol. 124 (2022) 171-173. [67] S. Hong, D.P. Kumar, E.H. Kim, H. Park, M. Gopannagari, D.A. Reddy, T.K. Kim, J. Mater. Chem. A 5 (2017) 20851. [68] J.X. Bai, W.L. Chen, L. Hao, R.C. Shen, P. Zhang, N. Li, X. Li, Chem. Eng. J. 447 (2022) 137488. [69] T. Li, N. Tsubaki, Z.L. Jin, J. Mater. Sci.Technol. 169 (2023) 82-104. |
[1] | Yuan Lin, Lv Chen, Jianhua Zhang, Yunyun Gui, Lijun Liu. Hierarchical In2S3 microflowers decorated with WO3 quantum dots: Sculpting S-scheme heterostructure for enhanced photocatalytic H2 evolution and nitrobenzene hydrogenation [J]. J. Mater. Sci. Technol., 2024, 174(0): 218-225. |
[2] | Huanmin Liu, Chao Wu, Kangle Lv, Dingguo Tang, Qin Li. In-situ generation of Au-carbon-TiO2 Ohmic junction from Ti3C2 MXene for efficient photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2024, 188(0): 144-154. |
[3] | Yajing Ren, Yunfeng Li, Guixu Pan, Ning Wang, Yan Xing, Zhenyi Zhang. Recent progress in CdS-based S-scheme photocatalysts [J]. J. Mater. Sci. Technol., 2024, 171(0): 162-184. |
[4] | Zehua Zhou, Di Lan, Junwen Ren, Yuhang Cheng, Zirui Jia, Guanglei Wu, Pengfei Yin. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2024, 185(0): 165-173. |
[5] | Kusum Sharma, Abhinandan Kumar, Tansir Ahamad, Quyet Van Le, Pankaj Raizada, Archana Singh, Lan Huong Nguyen, Sourbh Thakur, Van-Huy Nguyen, Pardeep Singh. Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review [J]. J. Mater. Sci. Technol., 2023, 152(0): 50-64. |
[6] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[7] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
[8] | MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds [J]. J. Mater. Sci. Technol., 2022, 98(0): 26-32. |
[9] | Bo Su, Haowei Huang, Zhengxin Ding, Maarten B.J. Roeffaers, Sibo Wang, Jinlin Long. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 124(0): 164-170. |
[10] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[11] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[12] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
[13] | Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 95(0): 70-77. |
[14] | Jingfa Li, Jian Zhou, Qihao Zhou, Xin Wang, Cong Guo, Min Li. Promoting the Na+-storage of NiCo2S4 hollow nanospheres by surfacing Ni-B nanoflakes [J]. J. Mater. Sci. Technol., 2021, 82(0): 114-121. |
[15] | Zheng Huang, Zhuxian Yang, Mian Zahid Hussain, Quanli Jia, Yanqiu Zhu, Yongde Xia. Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 84(0): 76-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||