J. Mater. Sci. Technol. ›› 2023, Vol. 158: 133-144.DOI: 10.1016/j.jmst.2023.02.032
• Research article • Previous Articles Next Articles
Peilin Wang, Kaifa Du*, Huayi Yin, Dihua Wang*
Received:
2022-12-09
Revised:
2023-01-27
Accepted:
2023-02-06
Published:
2023-09-20
Online:
2023-09-15
Contact:
*E-mail address:Peilin Wang, Kaifa Du, Huayi Yin, Dihua Wang. Enhancing oxide scale growth and adhesion via electrochemically regulating ion diffusion[J]. J. Mater. Sci. Technol., 2023, 158: 133-144.
[1] G.Z. Chen, D.J. Fray, T.W. Farthing, Nature 407 (20 0 0) 361-364. [2] X. Lu, Z. Zhang, T. Hiraki, O. Takeda, H. Zhu, K. Matsubae, T. Nagasaka, Nature 606 (2022) 511-515. [3] F. Alcaide, P.-.L. Cabot, E. Brillas, J. Power Sources 153 (2006) 47-60. [4] F. Wang, S. Deng, H. Zhang, J. Wang, J. Zhao, H. Miao, J. Yuan, J. Yan, Appl. Energy 275 (2020) 115342. [5] K. Wang, K. Jiang, B. Chung, T. Ouchi, P.J. Burke, D.A. Boysen, D.J.Bradwell H. Kim, U. Muecke, D.R. Sadoway, Nature 514 (2014) 348-350. [6] H. Kim, D.A. Boysen, J.M. Newhouse, B.L. Spatocco, B. Chung, P.J. Burke, D. J. Bradwell, K. Jiang, A .A. Tomaszowska, K.Wang, W. Wei, L.A. Ortiz, S.A. Bar- riga, S.M. Poizeau, D.R. Sadoway, Chem. Rev. 113(2013) 2075-2099. [7] L. Barelli, G. Bidini, G. Cinti, J. Milewski, Int. J. Hydrog. Energy 46 (2021) 14922-14931. [8] H. Yin, D. Tang, H. Zhu, Y. Zhang, D. Wang, Electrochem. Commun. 13(2011) 1521-1524. [9] J. Huang, P. Wang, P. Li, H. Yin, D. Wang, J. Mater. Sci.Technol. 93(2021) 110-118. [10] H. Yin, X. Mao, D. Tang, W. Xiao, L. Xing, H. Zhu, D. Wang, D.R. Sadoway, En- ergy Environ. Sci. 6(2013) 1538-1545. [11] Y. Chen, M. Wang, J. Zhang, J. Tu, J. Ge, S. Jiao, J. Mater. Chem. A 9 (2021) 14119-14146. [12] J. Ren, A. Yu, P. Peng, M. Le?er, F.F. Li, S. Licht, Acc. Chem. Res. 52(2019) 3177-3187. [13] A. Yu, G. Ma, J. Ren, P. Peng, F.F. Li, ChemSusChem 13 (2020) 6229-6245. [14] Y. Sakamura, Electrochim. Acta 80 (2012) 308-315. [15] W.-.S. Choi, W.-.B. Kim, K.-.S. Lim, S.-.H. Cho, J.-.H. Lee, Corros. Sci. 198(2022) 110133. [16] A.H. Sirk, D.R. Sadoway, L. Sibille, ECS Trans. 28(2010) 367-373. [17] H. Shi, P. Li, Z. Yang, K. Zheng, K. Du, L. Guo, R. Yu, P. Wang, H. Yin, D. Wang, A. C.S.Sustain, Chem. Eng. 41(2022) 13661-13668. [18] M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 117(2017) 7190-7239. [19] A.J. Carrillo, J. Gonzalez-Aguilar, M. Romero, J.M. Coronado, Chem. Rev. 119(2019) 4777-4816. [20] S. Guo, J. Zhang, W. Wu, W. Zhou, Prog. Mater. Sci. 97(2018) 44 8-4 87. [21] Y. He, K.-.C. Zhou, Y. Zhang, H.-.W. Xiong, L. Zhang, J. Mater. Chem. A 9 (2021) 25272-25285. [22] M. Sarvghad, S. Delkasar Maher, D. Collard, M. Tassan, G. Will, T.A. Steinberg, Energy Storage Mater. 14(2018) 179-198. [23] C. Li, G. Lei, J. Liu, A. Liu, C.L. Ren, H. Huang, J. Mater. Sci.Technol. 109(2022) 129-139. [24] W. Wei, S. Geng, F. Wang, J. Mater. Sci.Technol. 107(2022) 216-226. [25] M. Lambrecht, G. García-Martín, M.T. de Miguel, M.I. Lasanta, F.J. Pérez, Corros. Sci. 208(2022) 110673. [26] S. Frangini, J. Power Sources 182 (2008) 462-468. [27] S. Hu, H. Finklea, X. Liu, J. Mater. Sci.Technol. 90(2021) 243-254. [28] H. Ai, J. Hou, X.-.X. Ye, C.L. Zeng, H. Sun, X. Li, G. Yu, X. Zhou, J.-.Q. Wang, J. Nucl. Mater. 503(2018) 116-123. [29] S.P. Sah, E. Tada, A. Nishikata, Corros. Sci. 133(2018) 310-317. [30] Y.L. Wang, Q. Wang, H.J. Liu, C.L. Zeng, Corros. Sci. 103(2016) 268-282. [31] P. Wang, K. Du, M. Tang, H. Yin, D. Wang, Corros. Sci. 196(2022) 110027. [32] Y. Pan, S. Geng, G. Chen, F. Wang, Corros. Sci. 170(2020) 108680. [33] Z. Zhao, J. Wang, M. Chen, J. Zhang, F. Wang, D.J. Young, Acta Mater. 239(2022) 118264. [34] J. Yuan, W. Wang, S. Zhu, F. Wang, Corros. Sci. 75(2013) 309-317. [35] X. Cheng, H. Yin, D. Wang, Corros. Sci. 141(2018) 168-174. [36] S. Yang, L. Yang, M. Chen, J. Wang, S. Zhu, F. Wang, Acta Mater. 205(2021) 116576. [37] T.N.a.I. Uchida, J.Electrochem. Soc. 141(1994) 1191. [38] B.Y. Yang, K.Y. Kim, Electrochim. Acta 44 (1999) 2227-2234. [39] D. Tang, K. Zheng, H. Yin, X. Mao, D.R. Sadoway, D. Wang, Electrochim. Acta 279 (2018) 250-257. [40] D. Cao, Y. Ma, Z. Shi, J. Xu, X. Hu, Z. Wang, Corros. Sci. 156(2019) 32-43. [41] V. Chapman, B.J. Welch, M. Skyllas-Kazacos, Electrochim. Acta 56 (2011) 1227-1238. [42] C. Wagner, J. Electrochem. Soc. 103(1956) 571-580. [43] C. Wagner, J. Electrochem. Soc. 99(1952) 369. [44] M. Shen, S. Zhu, F. Wang, Nat. Commun. 7(2016) 13797. [45] H. Wang, R. Kou, T. Harrington, K.S. Vecchio, Acta Mater. 186(2020) 631-643. [46] D. Naumenko, B.A. Pint, W.J. Quadakkers, Oxid. Met. 86(2016) 1-43. [47] N. Mortazavi, C. Geers, M. Esmaily, V. Babic, M. Sattari, K. Lindgren, P. Malm- berg, B.Jonsson, M. Halvarsson, J.E. Svensson, I. Panas, L.G. Johansson, Nat. Mater. 17(2018) 610-617. [48] V. Maurice, G. Despert, S. Zanna, M.P. Bacos, P. Marcus, Nat. Mater. 3(2004) 687-691. [49] Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A. PaulAlivisatos, Science 304 (2004) 711-714. [50] R.P. Oleksak, M. Kapoor, D.E. Perea, G.R. Holcomb, Ö.N.Doğan, npj Mater.De- grad. 2(2018) 25. [51] J. Yan, Y. Qiu, B. Da, Z. Li, Y. Li, Z. Ding, L. Ma, P. Zhang, Y. Yuan, Y. Gu, Corros. Sci. 163(2020) 108298. [52] J.L. Smialek, Oxid. Met. 97(2022) 1-50. |
[1] | Sai Huang, Ao Wang, Xin-Yue Dong, Jin-Kun Li, Yan Meng, Jun-Ling Song. In-situ scalable fast fabrication of Cu-Cu2+1O nanorods for highly efficient electrocatalytic reduction into ammonia under neutral medium [J]. J. Mater. Sci. Technol., 2023, 155(0): 111-118. |
[2] | Shishi Shen, Xibao Li, Yingtang Zhou, Lu Han, Yu Xie, Fang Deng, Juntong Huang, Zhi Chen, Zhijun Feng, Jilin Xu, Fan Dong. Novel BiOBr/Bi2S3 high-low junction prepared by molten salt method for boosting photocatalytic degradation and H2O2 production [J]. J. Mater. Sci. Technol., 2023, 155(0): 148-159. |
[3] | Wei Zhang, Wenxian Li, Sean Li. Molten salt assisted self-activated carbon with controllable architecture for aqueous supercapacitor [J]. J. Mater. Sci. Technol., 2023, 156(0): 107-117. |
[4] | Chengbao Liu, Li Cheng, Lan-Yue Cui, Peimin Hou, Bei Qian, Rong-Chang Zeng. Robust damage warning and healing tracing strategy for anticorrosion coatings on magnesium alloy AZ31enabled by polydopamine fluorophores [J]. J. Mater. Sci. Technol., 2023, 152(0): 169-180. |
[5] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[6] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[7] | Yanhui Cao, Dajiang Zheng, Fan Zhang, Jinshan Pan, Changjian Lin. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review [J]. J. Mater. Sci. Technol., 2022, 102(0): 232-263. |
[8] | Yumin Zhang, Jiulong Sun, Xinzhe Xiao, Ning Wang, Guozhe Meng, Lin Gu. Graphene-like two-dimensional nanosheets-based anticorrosive coatings: A review [J]. J. Mater. Sci. Technol., 2022, 129(0): 139-162. |
[9] | Shan Chen, Zhongyu Huang, Mingzhe Yuan, Guang Huang, Honglei Guo, Guozhe Meng, Zhiyuan Feng, Ping Zhang. Trigger and response mechanisms for controlled release of corrosion inhibitors from micro/nanocontainers interpreted using endogenous and exogenous stimuli: A review [J]. J. Mater. Sci. Technol., 2022, 125(0): 67-80. |
[10] | Min Feng, Chengyang Jiang, Minghui Chen, Shenglong Zhu, Fuhui Wang. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation [J]. J. Mater. Sci. Technol., 2022, 120(0): 139-149. |
[11] | Yanning Chen, Liang Wu, Wenhui Yao, Jiahao Wu, Jianpeng Xiang, Xiaowei Dai, Tao Wu, Yuan Yuan, Jingfeng Wang, Bin Jiang, Fusheng Pan. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130(0): 12-26. |
[12] | Inime Ime Udoh, Hongwei Shi, Enobong Felix Daniel, Jianyang Li, Songhua Gu, Fuchun Liu, En-Hou Han. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies [J]. J. Mater. Sci. Technol., 2022, 116(0): 224-237. |
[13] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[14] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[15] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||