J. Mater. Sci. Technol. ›› 2023, Vol. 154: 114-128.DOI: 10.1016/j.jmst.2023.02.006
• Research Article • Previous Articles Next Articles
Peng Wanga,b, Peng Zhanga,b,*, Bin Wanga, Yankun Zhua, Zikuan Xua, Zhefeng Zhanga,b,*
Received:
2023-01-14
Revised:
2023-02-07
Accepted:
2023-02-07
Published:
2023-08-10
Online:
2023-03-11
Contact:
*E-mail addresses: pengzhang@imr.ac.cn (P. Zhang), zhfzhang@imr.ac.cn (Z. Zhang)
Peng Wang, Peng Zhang, Bin Wang, Yankun Zhu, Zikuan Xu, Zhefeng Zhang. Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue[J]. J. Mater. Sci. Technol., 2023, 154: 114-128.
[1] M.F. Garwood, H.H. Zurburg, M.A. Erickson, M. Gensamer, J.T. Burwell, F.L.Laque, in: Interpretation of Tests and Correlation with Service, American Society for Metals, Cleveland, 1951, pp. 11-14. [2] R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang, J. Mater. Sci.Technol. 70(2021) 233-249. [3] R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang, J. Mater. Sci.Technol. 70(2021) 250-267. [4] J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Fatigue Fract. Eng. Mater. Struct. 37(2014) 958-976. [5] J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Mater. Sci. Eng. A 564 (2013) 331-341. [6] C.W. Shao, X.Q. Zhang, S. Zhao, Y.K. Zhu, H.J. Yang, Y.Z. Tian, Z.J. Zhang, P. Zhang, X.H. An, Z.F. Zhang, Int. J. Plast. 159(2022) 103471. [7] R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 702 (2017) 259-264. [8] R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, X.H. An, Z.F. Zhang, Acta Mater. 144(2018) 613-626. [9] G. Qian, Y.F. Li, D.S. Paolino, A. Tridello, F. Berto, Y.S. Hong, Int. J. Fatigue 136 (2020) 105628. [10] Z.K. Xu, B. Wang, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 807 (2021) 140844. [11] M.D. Chapetti, T. Tagawa, T. Miyata, Mater. Sci. Eng. A 356 (2003) 236-244. [12] Y. Murakami, N.N. Yokoyama, J. Nagata, Fatigue Fract. Eng. Mater. Struct. 25(2002) 735-746. [13] G.A. Qian, C.E. Zhou, Y.S. Hong, Int. J. Fatigue 71 (2015) 35-44. [14] C.Q. Sun, Z.Q. Lei, J.J. Xie, Y.S. Hong, Int. J. Fatigue 48 (2013) 19-27. [15] B. Chen, J. Jiang, F.P.E.Dunne, Int. J. Plast. 101(2018) 213-229. [16] P. Wang, B. Wang, Y. Liu, P. Zhang, Y.K. Luan, D.Z. Li, Z.F. Zhang, Scr. Mater. 206(2022) 114232. [17] J. Lankford, Int. Mater. Rev. 22(1977) 221-228. [18] J.M. Zhang, S.X. Li, Z.G. Yang, G.Y. Li, W.J. Hui, Y.Q. Weng, Int. J. Fatigue 29 (2007) 765-771. [19] S. Loren, Int. J. Fatigue 25 (2003) 129-137. [20] C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci.Technol. 35(2019) 1298-1308. [21] Z.G. Yang, G. Yao, G.Y. Li, S.X. Li, Z.M. Chu, W.J. Hui, H. Dong, Y.Q. Weng, Int. J. Fatigue 26 (2004) 959-966. [22] C.Q. Sun, X.L. Liu, Y.S. Hong, Acta Mech. Sin. 31(2015) 383-391. [23] Y. Murakami, JSME Int. J. Ser. Ⅰ 32(1989) 167-180. [24] Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi, Scr. Mater. 46(2002) 157-162. [25] A. Vinogradov, T. Ishida, K. Kitagawa, V.I. Kopylov, Acta Mater. 53(2005) 2181-2192. [26] Z.F. Zhang, Z.G. Wang, Prog. Mater. Sci. 53(2008) 1025-1099. [27] C.W. Shao, Q. Wang, P. Zhang, Y.K. Zhu, Z.K. Zhao, X.G. Wang, Z.F. Zhang, Mater. Sci. Eng.A 740-741(2019) 28-33. [28] Z.F. Zhang, R. Liu, Z.J. Zhang, Y.Z. Tian, P. Zhang, Acta Mech. Sin. 54(2018) 1693-1704. [29] M. Bayerlein, H. Mughrabi, Acta Metall. Mater. 39(1991) 1645-1650. [30] S.K. Giri, M. Krishnan, U. Ramamurty, Mater. Sci. Eng. A 528 (2010) 363-370. [31] Y.S. Hong, X.L. Liu, Z.Q. Lei, C.Q. Sun, Int. J. Fatigue 89 (2016) 108-118. [32] G.H. Gao, R. Liu, K. Wang, X. Gui, R.D.K.Misra, B. Bai, Scr. Mater. 184(2020) 12-18. [33] S. Beretta, C. Anderson, Y. Murakami, Acta Mater. 54(2006) 2277-2289. [34] J.J. Li, S.H. Chen, G.J. Weng, W.J. Lu, Int. J. Plast. 144(2021) 103024. [35] F.P.E.Dunne, A.J. Wilkinson, R. Allen, Int. J. Plast. 23(2007) 273-295. [36] J. Li, Y.X. Yang, Y.B. Ren, J.H. Dong, K. Yang, J. Mater. Sci.Technol. 34(2018) 660-665. [37] Y. Murakami, in: Metal Fatigue: Effects of Small Defects and Nonmetallic In-clusions, Elsevier Science Ltd, Oxford, 2002, pp. 11-24. [38] Z.G. Yang, S.X. Li, J.M. Zhang, J.F. Zhang, G.Y. Li, Z.B. Li, W.J. Hui, Y.Q. Weng, Acta Mater. 52(2004) 5235-5241. [39] Z.G. Yang, J.M. Zhang, S.X. Li, G.Y. Li, Q.Y. Wang, W.J. Hui, Y.Q. Weng, Mater. Sci. Eng. A 427 (2006) 167-174. [40] Y. Murakami, Y. Yamashita, Proc. Eng. 74(2014) 6-11. [41] Y. Murakami, T. Nomoto, T. Ueda, Fatigue Fract. Eng. Mater. Struct. 22(1999) 581-590. [42] L. Tóth, S.Y. Yarema, Mater. Sci. 42(2006) 673-680. [43] S. Nishijima, J. Soc. Mater.Sci. Jpn. 29(1980) 24-29. [44] B. Wang, P. Zhang, R. Liu, Q.Q. Duan, Z.J. Zhang, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 736 (2018) 105-110. [45] H. Mayer, W. Haydn, R. Schuller, S. Issler, M. Bacher-Höchst, Int. J. Fatigue 31 (2009) 1300-1308. [46] M.D. Chapetti, Int. J. Fatigue 33 (2011) 833-841. [47] H.V. Atkinson, G. Shi, Prog. Mater. Sci. 48(2003) 457-520. [48] K. Tsubota, T. Sato, Y. Kato, K. Hiraoka, R. Hayashi, in: J.J.C. Hoo., W.B. Green (Eds.), Secondary American Society For Testing of Materials, Pennsylvania (USA), 1998, pp. 202-215. [49] H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57(2012) 268-435. [50] M. Sarikaya, A.K. Jhingan, G. Thomas, Metall. Mater. Trans. A 14 (1983) 1121-1133. [51] P. Zhang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 529 (2011) 62-73. [52] M.F. Ashby, D. Cebon, J. Phys. IV 3 (1993) 1-9. [53] X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Prog. Mater. Sci. 101(2019) 1-45. [54] C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, H.J. Yang, Z.F. Zhang, Mater. Sci. Eng. A 786 (2020) 139441. [55] J. Suryawanshi, K.G. Prashanth, U. Ramamurty, J. Alloy. Compd. 725(2017) 355-364. [56] M.Y. Seok, J.A. Lee, D.H. Lee, U. Ramamurty, S. Nambu, T. Koseki, J.I. Jang, Acta Mater. 121(2016) 164-172. [57] K. Gopinath, A.K. Gogia, S. Kamat, U. Ramamurty, Acta Mater. 57(2009) 1243-1253. [58] Y.S. Hong, A.G. Zhao, G.A. Qian, C.G. Zhou, Metall. Mater. Trans. A 43A (2012) 2753-2762. [59] M.L. Zhu, L. Jin, F.Z. Xuan, Acta Mater. 157(2018) 259-275. [60] O.H. Basquin, Am. Soc. Test. Mater. Proc. 10(1910) 625-630. [61] X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Acta Mater. 74(2014) 200-214. [62] X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, Mater. Res. Lett. 3(2015) 135-141. [63] Z.Q. Lei, J.J. Xie, C.Q. Sun, Y.S. Hong, Sci. China Ser. G-Phys.Mech. Astron. 57(2014) 74-82. [64] S.X. Li, Int. Mater. Rev. 57(2013) 92-114. [65] T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura, N. Oguma, J. Soc. Mater.Sci. Jpn. 49(2000) 779-785. [66] T. Sakai, A. Nakagawa, N. Oguma, Y. Nakamura, A. Ueno, S. Kikuchi, A. Sakaida, Int. J. Fatigue 93 (2016) 339-351. [67] C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Acta Mater. 134(2017) 128-142. [68] M. Ashby, Philos. Mag. 93(2013) 3878-3892. [69] M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, Nat. Mater. 10(2011) 123-128. [70] R.O. Ritchie, Nat. Mater. 10(2011) 817-822. [71] H.F. Li, P. Zhang, B. Wang, Z.F. Zhang, J. Mater. Sci.Technol. 100(2022) 46-50. [72] J. Xu, U. Ramamurty, E. Ma, JOM 62 (2010) 10-18. [73] P. Zhang, Z.F. Zhang, Science 378 (2022) 947-948. [74] X.K. Zhu, J.A. Joyce, Eng. Fract. Mech. 85(2012) 1-46. [75] G.R. Irwin, J. Franklin Inst. 290(1970) 513-521. [76] A.A. Griffith, Philos. Trans. R. Soc. Lond. A 221 (1921) 163-198. [77] E. Orowan, Rep. Prog. Phys. 12(1949) 185. [78] Z.J. Yu, Y.G. Wei, Sci. China-Technol. Sci. 62(2019) 721-728. [79] L. Cimbaro, A.P. Sutton, D.S. Balint, A.T. Paxton, M.C. Hardy, Int. J. Fract. 216(2019) 87-100. [80], in: ASTM E1823-21 Standard Terminology Relating to Fatigue and Fracture Testing, American Society for Testing and Materials, 2021, pp. 1-22. [81] H.F. Li, S.G. Wang, P. Zhang, R.T. Qu, Z.F. Zhang, Mater. Sci. Eng. A 729 (2018) 130-140. [82] H.F. Li, Q.Q. Duan, P. Zhang, Z.F. Zhang, Adv. Eng. Mater. 21(2019) 1801116. [83] Z.M. Xie, P. Wang, B. Wang, P. Zhang, X. Bai, Z.F. Zhang, Adv. Eng. Mater. 24(2022) 2200151. [84] G.R. Irwin, R. Dewit, J. Test. Eval. 11(1983) 56-65. [85] R.W.Hertzberg, in: Deformation and Fracture Mechanics of Engineering Ma-terials, fourth ed., John Wiley & Sons, New York, 1995, pp. 245-368. [86] Z.G. Yang, S.X. Li, Y.B. Liu, Y.D. Li, G.Y. Li, W.J. Hui, Y.Q. Weng, Int. J. Fatigue 30 (2008) 1016-1023. [87] A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, Y.S. Hong, Mater. Sci. Eng. A 528 (2011) 6872-6877. [88] K. Shiozawa, Y. Morii, S. Nishino, L. Lu, Int. J. Fatigue 28 (2006) 1521-1532. [89] T. Sakai, Y. Sato, N. Oguma, Fatigue Fract. Eng. Mater. Struct. 25(2002) 765-773. [90] A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, Y.S. Hong, Int. J. Fatigue 38 (2012) 46-56. [91] M. Fan, Y.M. Zhang, Z.M. Xiao, Int. J. Damage Mech. 26(2017) 541-559. [92] J.R. Rice, J. Appl. Mech. 35(1968) 379-386. [93] Z.K. Xu, B. Wang, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 789 (2020) 139659. [94] Z. Huang, D. Wagner, C. Bathias, P.C. Paris, Acta Mater. 58(2010) 6046-6054. [95] C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Acta Mater. 103(2016) 781-795. [96] R. Liu, Z.J. Zhang, P. Zhang, Z.F. Zhang, Acta Mater. 83(2015) 341-356. [97] C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Q.Q. Duan, Z.F. Zhang, Acta Mater. 118(2016) 196-212. [98] M.L. Zhu, F.Z. Xuan, J. Chen, Mater. Sci. Eng. A 546 (2012) 90-96. [99] R.O. Ritchie, B. Francis, W.L. Server, Metall. Trans. A 7 (1976) 831-838. [100] J.C. Pang, M.X. Yang, G. Yang, S.D. Wu, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 553 (2012) 157-163. [101] P. Kumar, S. Msolli, M.H. Jhon, U. Ramamurty, Scr. Mater. 184(2020) 34-40. |
[1] | Rui Ma, Xiping Guo. Cooperative effects of Mo, V and Zr additions on the microstructure and properties of multi-elemental Nb-Si based alloys [J]. J. Mater. Sci. Technol., 2023, 132(0): 27-41. |
[2] | Wei Liu, Shuai Huang, Chengtong Ye, Lina Jia, Yongwang Kang, Jiangbo Sha, Bingqing Chen, Yu Wu, Huaping Xiong. Progress in Nb-Si ultra-high temperature structural materials: A review [J]. J. Mater. Sci. Technol., 2023, 149(0): 127-153. |
[3] | D.H. Chung, J. Lee, Q.F. He, Y.K. Kim, K.R. Lim, H.S. Kim, Y. Yang, Y.S. Na. Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys [J]. J. Mater. Sci. Technol., 2023, 146(0): 1-9. |
[4] | Qiaolei Li, Zhenxue Pan, Jingjing Liang, Zongbo Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Ceramic composites toughened by vat photopolymerization 3D printing technology [J]. J. Mater. Sci. Technol., 2023, 146(0): 42-48. |
[5] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[6] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[7] | Cheng Luo, Cong Li, Ke Cao, Junbao Li, Junhui Luo, Qinghua Zhang, QianQian Zhou, Fan Zhang, Lin Gu, Li Yang, Yichun Zhou. Ferroelastic domain identification and toughening mechanism for yttrium tantalate-zirconium oxide [J]. J. Mater. Sci. Technol., 2022, 127(0): 78-88. |
[8] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[9] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[10] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[11] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[12] | Z.H. Cao, B.N. Zhang, M.X. Huang. Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade [J]. J. Mater. Sci. Technol., 2022, 124(0): 109-115. |
[13] | H.F. Li, P. Zhang, B. Wang, Z.F. Zhang. Predictive fatigue crack growth law of high-strength steels [J]. J. Mater. Sci. Technol., 2022, 100(0): 46-50. |
[14] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[15] | X.J. Fan, R.T. Qu, Z.F. Zhang. Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 123(0): 70-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||