J. Mater. Sci. Technol. ›› 2022, Vol. 127: 78-88.DOI: 10.1016/j.jmst.2022.04.007
• Research Article • Previous Articles Next Articles
Cheng Luoc,1, Cong Lia,b,1, Ke Caoa,b,1, Junbao Lic, Junhui Luoc, Qinghua Zhangc, QianQian Zhoue, Fan Zhangc, Lin Gud,**(), Li Yanga,b,*(
), Yichun Zhoua,b,*(
)
Received:
2022-03-09
Revised:
2022-04-14
Accepted:
2022-04-18
Published:
2022-11-10
Online:
2022-11-10
Contact:
Lin Gu,Li Yang,Yichun Zhou
About author:
yichunzhou@xidian.edu.cn (Y. Zhou)Cheng Luo, Cong Li, Ke Cao, Junbao Li, Junhui Luo, Qinghua Zhang, QianQian Zhou, Fan Zhang, Lin Gu, Li Yang, Yichun Zhou. Ferroelastic domain identification and toughening mechanism for yttrium tantalate-zirconium oxide[J]. J. Mater. Sci. Technol., 2022, 127: 78-88.
Fig. 1. TEM images of YTaO4, (a) bright field image, (b) electron diffraction (SAED) image, (c, d) dark field images corresponding to the diffraction spots in the insets of variant M1 and variant M2.
Fig. 2. (a) Four possible M-phase variants in YTaO4 during the T→M phase transition, (b) lattice projections of four M-phase variants on the (010) plane of YTaO4 after the T→M phase transition.
Combinations | Atomic layer ratio |
---|---|
(M1, M2) | |
(M1, M3) | |
(M2, M4) | |
(M3, M4) |
Table 1. The ratio of atomic layers corresponding to different combinations of variants.
Combinations | Atomic layer ratio |
---|---|
(M1, M2) | |
(M1, M3) | |
(M2, M4) | |
(M3, M4) |
Fig. 4. XRD patterns of Y0.5-x/2Ta0.5-x/2ZrxO2 (x = 0, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24 and 0.28) ceramic after maintaining temperature at 1600 °C for 10 h. (a) Partial enlarged view of characteristic t-ZrO2 peak, (b) percentage of M-YTaO4 phase and t-ZrO2 phase, volume unit cell, and (c) monoclinic angle β of M-phase Y0.5-x/2Ta0.5-x/2ZrxO2 with different ZrO2 concentrations,TEM image of Y0.5-x/2Ta0.5-x/2ZrxO2, (d) bright field image, (e) electron diffraction (SAED) image, (f and g) dark field images corresponding to the diffraction spots in the inserts of variant M1 and variant M2.
ZrO2 content (x) | b/2M | aM | cM | β |
---|---|---|---|---|
0 | 5.32128 | 5.46291 | 5.0538 | 95.48669 |
0.04 | 5.31435 | 5.45629 | 5.0541 | 95.45977 |
0.08 | 5.30785 | 5.4495 | 5.05335 | 95.38817 |
0.12 | 5.30039 | 5.44383 | 5.05682 | 95.30099 |
0.16 | 5.29383 | 5.43746 | 5.0571 | 95.20142 |
0.20 | 5.29021 | 5.43565 | 5.06251 | 95.10217 |
0.24 | 5.27696 | 5.42452 | 5.06264 | 94.98067 |
0.28 | 5.26192 | 5.41265 | 5.06347 | 94.78799 |
Table 2. The lattice constant of Y0.5-x/2Ta0.5-x/2ZrxO2.
ZrO2 content (x) | b/2M | aM | cM | β |
---|---|---|---|---|
0 | 5.32128 | 5.46291 | 5.0538 | 95.48669 |
0.04 | 5.31435 | 5.45629 | 5.0541 | 95.45977 |
0.08 | 5.30785 | 5.4495 | 5.05335 | 95.38817 |
0.12 | 5.30039 | 5.44383 | 5.05682 | 95.30099 |
0.16 | 5.29383 | 5.43746 | 5.0571 | 95.20142 |
0.20 | 5.29021 | 5.43565 | 5.06251 | 95.10217 |
0.24 | 5.27696 | 5.42452 | 5.06264 | 94.98067 |
0.28 | 5.26192 | 5.41265 | 5.06347 | 94.78799 |
Fig. 5. The morphology of pure YTaO4 (a) and Y0.44Ta0.44Zr0.12O2 (c) after small-load dimensional indentation (0.01 kg), (b, d) local morphology in the vicinity of the dimensional indentation, (e) cross-section morphology of the pure YTaO4 after Vickers indentation, (f) microscopic morphology of the complete domain switch zone and the domain switching area of pure YTaO4, (g) uneven stripe area near Vickers indentation, (h) high-resolution imaging of the light-dark fringe interface in the uneven fringe area near the Vickers indentation, (i) schematic of the mutual switching between variants M1 and M2, (j) schematic of the mutual switch process between two variants.
Fig. 6. Spontaneous strain component in the T phase space of the conversion of M1 and M2 combination to (a) variant M1 and (b) variant M2, the magnitude of the principal strain component generated in the normal strain space when the combination of variants (M1 and M2) switches to (c) variant M1 and (d) variant M2.
Fig. 7. Schematic diagram of (a) monoclinic angle β and (b) rotation angle α of the ferroelastic domain switch decreased after doping with Zr4+ ions, (c) the energy barrier of the ferroelastic domain switching decreased with Zr4+ ions increasing.
Fig. 8. Three-dimensional indentation morphology of Y0.5-x/2Ta0.5-x/2ZrxO2 ceramic samples under 15 kg load, (a) x = 0, (b) x = 0.04, (c) x = 0.08, (d) x = 0.12, (e) x = 0.16, (f) x = 0.20, (g) x = 0.24, (h) x = 0.28, and (i) ideal dimensional indentation morphology of high toughness ceramic materials.
Fig. 9. Schematic diagram of two calculation models for calculating fracture toughness through Vickers indentation and assumption of crack surface, (a) Law Evans maishall elastic / plastic indentation fracture model, (b) Laugier Niihara radial crack model;
Fig. 11. (a) The strain component in the T phase space of the switch of variant M1 to variant M2, (b) the magnitude of the principal strain component generated in the normal strain space when the variant M1 converts to the variant M2, (c) schematic representation and (d) microscopic image of the crack in low-concentration doped Zr4+ Y0.5-x/2Ta0.5-x/2ZrxO2 during the M1 to M2 conversion. Schematic representation of Zr4+ (e) gathered at the interface of the variants and (f) migrated into the Y0.5-x/2Ta0.5-x/2ZrxO2 domain switch area.
[1] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
DOI URL |
[2] |
K. Ren, Q. Wang, G. Shao, X. Zhao, Y. Wang, Scr. Mater. 178 (2020) 382-386.
DOI URL |
[3] |
G. Mehboob, M.J. Liu, T. Xu, S. Hussain, G. Mehboob, A. Tahir, Ceram. Int. 46 (2020) 8497-8521.
DOI URL |
[4] |
X. Zhang, A.C. Cocks, Y. Okajima, K. Takeno, T. Torigoe, Acta Mater 206 (2021) 116649.
DOI URL |
[5] | T. Yoshimoto, T. Goto, H. Takagi, Y. Nakamura, H. Uchida, C.A. Ross, M. Inoue, Sci. Re-UK. 7 (2017) 1-9. |
[6] |
B. Stelzer, K. Pingen, M. Hans, D.M. Holzapfel, S. Richter, J. Mayer, K.G. Pradeep, J.M. Schneider, Materials 14 (2021) 692.
DOI URL |
[7] |
R. Zong, F. Wu, P. Song, J. Feng, Ceram. Int. 45 (2019) 24894-24899.
DOI URL |
[8] | A.V. Khoroshilov, A.A. Ashmarin, V.N. Guskov, E.G. Sazonov, K.S. Gavrichev, V.M. Novotortsev, Doklady Physic. Chem. 484 (2019) 12-14. |
[9] | L. Chen, M. Hu, P. Wu, J. Feng, J. A Ceram. Soc. 102 (2019) 4809-4821. |
[10] |
S. Shian, P. Sarin, M. Gurak, M. Baram, W.M. Kriven, D.R. Clarke, Acta Mater. 69 (2014) 196-202.
DOI URL |
[11] |
M. Shi, Z. Xue, Z. Zhang, X. Ji, E. Byon, S. Zhang, Sur. Coat. Tech. 395 (2020) 125913.
DOI URL |
[12] |
N. Song, Z. Wang, Y. Xing, M. Zhang, P. Wu, F. Qian, J. Feng, L. Qi, C. Wan, W. Pan, Materials 12 (2019) 1677.
DOI URL |
[13] |
J. Wang, Y. Zhou, X. Chong, R. Zhou, J. Feng, Ceram. Int. 42 (2016) 13876-13881.
DOI URL |
[14] |
E.K.H. Salje, Annu. Rev. Mater. Res. 42 (2012) 265-283.
DOI URL |
[15] |
J. Li, Q. Zhou, L. Yang, Y. Zhou, J. Zhao, J. Huang, Y. Wei, J. Alloys Compd. 889 (2022) 161557.
DOI URL |
[16] |
J. Feng, S. Shian, B. Xiao, D.R. Clarke, Phys. Rev. B 90 (2014) 094102.
DOI URL |
[17] | P. Wu, Y. Zhou, F. Wu, M. Hu, X. Chong, J. Feng, J. A Ceram. Soc. 102 (2019) 7656-7664. |
[18] |
A.N. Fernandez, C.A. Macauley, D. Park, C.G. Levi, J. Eur. Ceram. Soc. 38 (2018) 4786-4798.
DOI URL |
[19] |
F. Zhang, G. Zhang, L. Yang, Y. Zhou, Y. Du, J. Eur. Ceram. Soc. 39 (2019) 5036-5047.
DOI |
[20] |
C.A. Macauley, A.N. Fernandez, J.S. Van Sluytman, C.G. Levi, J. Eur. Ceram. Soc.. 38 (2018) 4523-4532.
DOI URL |
[21] | P. Wu, M. Hu, L. Chen, W. Chen, X. Chong, H. Gu, J. Feng, Mater. 4 (2018) 478-486. |
[22] |
C.A. Macauley, A.N. Fernandez, C.G. Levi, J. Eur. Ceram. Soc. 37 (2017) 4888-4901.
DOI URL |
[23] |
M. Gurak, Q. Flamant, L. Laversenne, D.R. Clarke, J. Eur. Ceram. Soc. 38 (2018) 3317-3324.
DOI URL |
[24] |
Q. Flamant, M. Gurak, D.R. Clarke, J. Eur. Ceram. Soc. 38 (2018) 3925-3931.
DOI URL |
[25] |
W. Yang, F. Ye, S. Yan, L. Guo, Ceram. Int. 46 (2020) 9311-9318.
DOI URL |
[26] |
F. Ye, Y. Yuan, S. Yan, L. Guo, J. Yu, Mater. Chem. Phys. 256 (2020) 123679.
DOI URL |
[27] |
F. Ye, W. Yang, S. Yan, J. Yu, J. Therm. Spray Tech. 30 (2021) 873-885.
DOI URL |
[28] |
Z. Zhou, W. Yuan, W. Zhu, X. Hu, Y. Zou, Q. Wu, H. Wei, Ceram. Int. 48 (2022) 7159-7167.
DOI URL |
[29] |
Q. Zheng, F. Wu, L. Chen, F. Qian, K. Yang, Z. Ge, P. Song, J. Feng, Mater. Lett. 268 (2020) 127586.
DOI URL |
[30] | F. Wu, P. Wu, Y. Zhou, X. Chong, J. Feng, J. A Ceram. Soc. 103 (2020) 2727-2740. |
[31] |
T. Mokkelbost, H.L. Lein, P.E. Vullum, R. Holmestad, T. Grande, M.A. Einarsrud, Ceram. Int. 35 (2009) 2877-2883.
DOI URL |
[32] |
Z. Chen, P. Chen, S. Li, Mater. Sci. Eng. A 532 (2012) 606-609.
DOI URL |
[33] | P. Wu, M. Hu, L. Chen, F. Wu, X. Chong, J. Feng, J. Am. Ceram. Soc. (2018) 889-895. |
[34] | L. Jian, C. Wayman, J. A Ceram. Soc. 80 (1997) 803-806. |
[35] |
K. Bhattacharya, R.V. Kohn, Arch. Ration. Mech. Anal. 139 (1997) 99-180.
DOI URL |
[36] |
M. Lepple, K. Lilova, C.G. Levi, A. Navrotsky, J. Mater. Res. 34 (2019) 3343-3350.
DOI |
[37] | N.R. Kadam, G. Karthikeyan, D.M. Kulkarni, Mater.Today Proc. 44 (2021) 1111-1117. |
[38] | R.A. Abbas, S.A. Ajeel, M.A.A. Bash, Mater.Today Proc. 42 (2021) 2553-2560. |
[39] |
W. Zhu, Q. Wu, L. Yang, Y. Zhou, Ceram. Int. 46 (2020) 18526-18533.
DOI URL |
[40] |
K. Niihara, R. Morena, D. Hasselman, J. Mater. Sci. Lett. 1 (1982) 13-16.
DOI URL |
[41] |
B. Basu, Metall. Rev. 50 (2005) 239-256.
DOI URL |
[42] |
W.J. Bowman, M.N. Kelly, G.S. Rohrer, C.A. Hernandez, P.A. Crozier, Nanoscale 9 (2017) 17293-17302.
DOI URL |
[1] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[2] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[3] | X.J. Fan, R.T. Qu, Z.F. Zhang. Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 123(0): 70-77. |
[4] | Z.H. Cao, B.N. Zhang, M.X. Huang. Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade [J]. J. Mater. Sci. Technol., 2022, 124(0): 109-115. |
[5] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[6] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[7] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[8] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[9] | J. Dong, J. Shen, Y.H. Sun, H.B. Ke, B.A. Sun, W.H. Wang, H.Y. Bai. Composition and size dependent torsion fracture of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 153-160. |
[10] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[11] | Guangrong Li, Guanjun Yang. Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure [J]. J. Mater. Sci. Technol., 2019, 35(3): 231-238. |
[12] | Ahmed Elmarakbi, Panagiotis Karagiannidis, Alessandra Ciappa, Franco Innocente, Francesco Galise, Brunetto Martorana, Francesco Bertocchi, Francesco Cristiano, Elvira Villaro ábalos, Julio Gómez. 3-Phase hierarchical graphene-based epoxy nanocomposite laminates for automotive applications [J]. J. Mater. Sci. Technol., 2019, 35(10): 2169-2177. |
[13] | Lu Hao, Ouyang Chenxin, Yan Xianguo, Wang Jian, Hua Guomin, Chung Reinaldo, Li D.Y.. Potential application of electron work function in analyzing fracture toughness of materials [J]. J. Mater. Sci. Technol., 2017, 33(10): 1128-1133. |
[14] | Qisong Li, Yujun Zhang, Hongyu Gong, Haibin Sun, Wenjie Li, Li Ma, Yanshuang Zhang. Enhanced Fracture Toughness of Pressureless-sintered SiC Ceramics by Addition of Graphene [J]. J. Mater. Sci. Technol., 2016, 32(7): 633-638. |
[15] | Abdelrahman Hussein, Sourav Sarkar, Byungki Kim. Low Temperature Reduction of Graphene Oxide Using Hot-plate for Nanocomposites Applications [J]. J. Mater. Sci. Technol., 2016, 32(5): 411-418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||