J. Mater. Sci. Technol. ›› 2022, Vol. 123: 49-59.DOI: 10.1016/j.jmst.2022.01.021
• Research Article • Previous Articles Next Articles
Ziqi Caoa,c, Guang Rana,c,**(), Zhen Wangb, Yipeng Lia,c, Xiaoyong Wub, Lu Wub,*(
), Xiuyin Huanga,c, Huajun Mob
Received:
2021-11-21
Revised:
2022-01-16
Accepted:
2022-01-19
Published:
2022-10-01
Online:
2022-09-30
Contact:
Guang Ran,Lu Wu
About author:
**E-mail addresses: gran@xmu.edu.cn (G. Ran).Ziqi Cao, Guang Ran, Zhen Wang, Yipeng Li, Xiaoyong Wu, Lu Wu, Xiuyin Huang, Huajun Mo. In-situ TEM study on the evolution of dislocation loops and bubbles in CeO2 during Kr+ single-beam and Kr+-H2+ dual-beam synergetic irradiation[J]. J. Mater. Sci. Technol., 2022, 123: 49-59.
Fig. 1. (a) SRIM simulation results showing the irradiation damage and injected Kr & H concentrations as a function of irradiation depth in the CeO2 irradiated by 400 keV Kr+ & 30 keV H2+ dual beam under the fluence of 7.74 × 1013 Kr+/cm2 and 2.38 × 1013 H2+/cm2; (b) Irradiation damage and injected Kr & H concentrations as a function of irradiation time in the in-situ monitored region with the thickness of about 100 nm.
Ion type and energy | Ion flux (Ions/cm2·s) | Irradiation damage rate (dpa/s) | Injected ion concentration rate (appm/s) | Injected H concentration rate (appm / dpa) | Maximum irradiation damage, (dpa) | Maximum ion concentrations, (appm) |
---|---|---|---|---|---|---|
400 keV Kr+ | 1.29 × 1012 | 3.45 × 10-3 | 0.329 | / | 24.8 | 2369 |
30 keV H2+ | 3.96 × 1011 | 4.66 × 10-6 | 0.152 | 45 | 0.33 | 1094 |
Table 1. Experimental parameters of Kr+ & H2+ dual-beam and Kr+ sing-beam irradiation in the CeO2 foils with the thickness of approximately 100 nm.
Ion type and energy | Ion flux (Ions/cm2·s) | Irradiation damage rate (dpa/s) | Injected ion concentration rate (appm/s) | Injected H concentration rate (appm / dpa) | Maximum irradiation damage, (dpa) | Maximum ion concentrations, (appm) |
---|---|---|---|---|---|---|
400 keV Kr+ | 1.29 × 1012 | 3.45 × 10-3 | 0.329 | / | 24.8 | 2369 |
30 keV H2+ | 3.96 × 1011 | 4.66 × 10-6 | 0.152 | 45 | 0.33 | 1094 |
Fig. 2. In-situ BF TEM micrographs showing the evolution of dislocation loops at 1073 K, which were captured at the two-beam diffraction conditions of (a-f) g=$11\bar{1}$ near [011] zone axis during Kr+ & H2+ dual-beam synergetic irradiation and (g–i) g=200 near [011] zone axis during Kr+ single-beam irradiation. The irradiation damage and H concentration were written directly above each image. All images have the same magnification.
Fig. 3. BF TEM images of the CeO2 TEM foil after Kr+ & H2+ dual-beam synergetic irradiation to 0.8 dpa & 36 appm H, which were captured at two-beam diffraction condition near [011] zone axis with (a) g=$11\bar{1}$; (b) g=$02\bar{2}$; and (c) g=$\bar{1}1$$\bar{1}$.
Fig. 4. In-situ BF TEM images taken at g=$11\bar{1}$ near [011] zone axis display the rotation of habit plane of dislocation loops in the CeO2 foil during Kr+ & H2+ dual-beam synergetic irradiation. The irradiation damage and H concentration: (a) 0.2 dpa+9 appm H; (b) 0.4 dpa+18 appm H; and (c) 0.8 dpa+36 appm H.
Fig. 5. In-situ BF TEM images of the Kr+ single-beam irradiated CeO2 with the irradiation doses of (a1)–(c1) 1.0 dpa and (a2)–(c2) 2.1 dpa at 1073 K. Imaging was performed by using the [011] zone axis. The diffraction vectors adopted are (a1) and (a2) g=$11\bar{1}$; (b1) and (b2) g=200; (c1) and (c2) g=$\bar{1}$$1\bar{1}$.
Fig. 6. Comparative analysis of (a) Average diameter vs. irradiation damage and (b) Areal density of dislocations vs. irradiation damage in the CeO2 foils during 400 keV Kr+ & 30 keV H2+ dual-beam synergetic irradiation and 400 keV Kr+ single-beam irradiation.
Fig. 7. In-situ under-focused BF TEM images showing the evolution of gas bubbles in the CeO2 during 400 keV Kr+ & 30 keV H2+ dual-beam synergetic irradiation (a1-e1) and 400 keV Kr+ single-beam irradiation (a2-e2). The irradiation dose and hydrogen concentration were written directly above each image.
Fig. 8. The variation of (a) the average bubble diameter, (b) the bubble areal number density, and (c) the swelling with the increase of irradiation damage in the CeO2 during 400 keV Kr+ & 30 keV H2+ dual-beam synergetic irradiation and 400 keV Kr+ single-beam irradiation at 1073 K.
[1] |
W.L Jiang, M.A. Conroy, K. Kruska, MJ. Olszta, T.C. Droubay, J.M. Schwantes, C. A. Taylor, P.M. Price, K. Hattar, R. Devanathan, J. Phys. Chem. C 123 (2019) 2591-2601.
DOI URL |
[2] |
P.D. Edmondson, Y. Zhang, S. Moll, T. Varga, F. Namavar, W.J. Weber, Phys. Rev. B 85 (2012) 214113.
DOI URL |
[3] |
B. Ye, M.A. Kirk, W. Chen, A. Oaks, J. Rest, A. Yacout, J.F. Stubbins, J. Nucl. Mater. 414 (2011) 251-256.
DOI URL |
[4] |
J. Rolecek, S. Foral, K. Katovsky, D. Salamon, Adv. Appl. Ceram. 116 (3) (2017) 123-131.
DOI URL |
[5] |
C.J. Ulmer, W.Y. Chen, D.E. Wolfe, A.T. Motta, J. Nucl. Mater. 545 (2021) 152688.
DOI URL |
[6] |
D.J. Kim, J. Am. Ceram. Soc. 72 (1989) 1415-1421.
DOI URL |
[7] |
B. Ye, A. Oaks, M. Kirk, D. Yun, W.Y. Chen, B. Holtzman, J.F. Stubbins, J. Nucl. Mater. 441 (2013) 525-529.
DOI URL |
[8] |
P. Sapkota, A. Aprahamian, K.Y. Chan, B. Frentz, K.T. Macon, S. Ptasinska, D. Robertson, K. Manukyan, J. Chem. Phys. 152 (2020) 104704.
DOI URL |
[9] |
F. Meng, Z. Fan, C. Zhang, Y. Hu, T. Guan, A. Li, J. Mater. Sci. Technol. 33 (2017) 444-451.
DOI URL |
[10] |
J. W.D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, T.F. Jaramillo, Nat. Energy 1 (5) (2016) 16053.
DOI URL |
[11] |
R. Fiala, M. Vaclavu, M. Vorokhta, I. Khalakhan, J. Lavkova, V. Potin, I. Matoli- nova, V. Matolin, J. Power Sources 273 (2015) 105-109.
DOI URL |
[12] |
X.Q. Cao, J. Mater. Sci. Technol. 23 (2007) 15-22.
DOI URL |
[13] |
P.D. Edmondson, Y. Zhang, S. Moll, F. Namavar, W.J. Weber, Acta Mater. 60 (2012) 5408-5416.
DOI URL |
[14] |
J.T. Graham, Y.W. Zhang, W.J. Weber, J. Nucl. Mater. 498 (2018) 400-408.
DOI URL |
[15] |
D. Yun, A.J. Oaks, W.Y. Chen, M.A. Kirk, J. Rest, Z.Z. Insopov, A.M. Yacout, J.F. Stubbins, J. Nucl. Mater. 418 (2011) 80-86.
DOI URL |
[16] |
A.J. Popel, S.L. Solliec, G.I. Lampronti, J. Day, P.K. Petrov, I. Farnan, J. Nucl. Mater. 484 (2017) 332-338.
DOI URL |
[17] |
D.S. Aidhy, Y.W. Zhang, W.J. Weber, Scr. Mater. 83 (2014) 9-12.
DOI URL |
[18] |
M.V. Zdorovets, A.L. Kozlovskiy, Surf. Coat. Technol. 383 (2020) 125286.
DOI URL |
[19] |
Y. Chang, Y. Guo, M. Li, K. Wang, L. Lv, D. Liu, J. Nucl. Mater. 518 (2019) 41-47.
DOI URL |
[20] |
A.J. Terricabras, J.O. Kiggans, L. Wang, S.J. Zinkle, J. Nucl. Mater. 552 (2021) 153027.
DOI URL |
[21] | V. Grover, R. Shukla, R. Kumari, B.P. Mandal, D.K. Avasthi, Phys. Chem. 16 (2014) 27065-27073. |
[22] |
N. Ishikawa1, N. Okubo, T. Taguchi, Nanotechnolog. 26 (2015) 355701.
DOI URL |
[23] |
W.F. Cureton, R.I. Palomares, C.L. Tracy, E.C. O’Quinn, J. Walters, M. Zdorovets, R. C. Ewing, M. Toulemonde, M. Lang, J. Nucl. Mater. 525 (2019) 83-91.
DOI URL |
[24] |
K. Yasuda, M. Etoh, K. Sawada, T. Yamamoto, K. Yasunaga, S. Matsumura, N. Ishikawa, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 314 (2013) 185-190.
DOI URL |
[25] |
R.I. Palomares, J. Shamblin, C.L. Tracy, J. Neuefeind, R.C. Ewing, C. Trautmann, M. Lang, J. Mater. Chem. A 5 (24) (2017) 12193-12201.
DOI URL |
[26] |
A. Iwase, H. Ohno, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, M. Kinoshita, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267 (6) (2009) 969-972.
DOI URL |
[27] |
H. Ohno, A. Iwase, D. Matsumura, Y. Nishihata, J. Mizuki, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, M. Kinoshita, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 266 (12) (2008) 3013-3017.
DOI URL |
[28] |
M. Varshney, A. Sharma, R. Kumar, K.D. Verma, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 (2011) 2786-2791.
DOI URL |
[29] |
S. Takaki, K. Yasuda, T. Yamamoto, S. Matsumura, N. Ishikawa, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 326 (2014) 140-144.
DOI URL |
[30] |
W.F. Cureton, R.I. Palomares, J. Walters, C.L. Tracy, C.H. Chen, R.C. Ewing, G. Baldinozzi, J. Lian, C. Trautmann, M. Lang, Acta Mater. 160 (2018) 47-56.
DOI URL |
[31] | L. Li, Z.Y. Xu, TY. Hsu, Q. Ao, J. Mater. Sci. Technol. 12 (1996) 159-160. |
[32] |
M. Nolan, J.E. Fearon, G.W. Watson, Solid State Ion. 177 (35) (2006) 3069-3074.
DOI URL |
[33] |
S. Beschnitt, T. Zacherle, R.A. De Souza, J. Phys. Chem. C 119 (49) (2015) 27307-27315.
DOI URL |
[34] |
C. Dai, L. Balogh, M.R. D Z.Yao, Philos. Mag. 97 (12) (2017) 944-956.
DOI URL |
[35] |
J. Chen, N. Gao, P. Jung, T. Sauvage, J. Nucl. Mater. 441 (2013) 216-221.
DOI URL |
[36] |
O. El-Atwani, E. Aydogan, E. Esquivel, M. Efe, S.A.M Y.Q. Wang, Acta Mater. 147 (2018) 277-283.
DOI URL |
[37] |
R.S. Barnes, Discuss. Faraday Soc. 31 (1961) 38-44.
DOI URL |
[38] | M. Eldrup, B.N. Singh, S.J. Zinkle, T.S. Byun, K. Farrell, J. Nucl. Mater. 307 (2002) 912. |
[39] |
B. Mastel, J.L. Brimhall, Radiat. Eff. 3 (2) (1970) 203-215.
DOI URL |
[40] |
Y. Li, L. Wang, G. Ran, Y. Yuan, L. Wu, X. Liu, X. Qiu, Z. Sun, Y. Ding, Q. Han, X. Wu, H. Deng, X. Huang, Acta Mater. 206 (2021) 116618.
DOI URL |
[41] |
X.O. Yi, M.L. Jenkins, M.A. Kirk, Z.F. Zhou, S.G. Roberts, Acta Mater. 112 (2016) 105-120.
DOI URL |
[42] |
O. El-Atwani, W.S. Cunningham, J.R. Trelewicz, M. Li, B.D. Wirth, S.A. Maloy, J. Nucl. Mater. 538 (2020) 152150.
DOI URL |
[43] |
Y.P. Li, G. Ran, G. Y.J, Z.P. Sun, X.Y. Liu, Y.M. Li, X. Qiu, Y. Xin, Acta Mater. 201 (2021) 462-476.
DOI URL |
[44] |
Q. Han, Y.P. Li, G. Ran, X.Y. Liu, L. Wu, Y. Chen, P.H. Chen, X.Q. Ye, Y.F. Ding, X. Y. Wu, J. Mater. Sci. Technol. 87 (2021) 108-119.
DOI URL |
[45] | X.Y. Liu, Y.P. Li, G. Ran, Q. Han, P.H. Chen, Mater. Today Energy 21 (2021) 100731. |
[46] | Y.Z. Huang, Q.Z. Chen, W.Y. Chu, J. Mater. Sci. Technol. 12 (1996) 215-218. |
[47] | Y.H. Huang, Q.Z. Chen, W.Y. Chu, J. Mater. Sci. Technol. 13 (1997) 483-486. |
[48] |
B. Zhang, X.L. Ma, J. Mater. Sci. Technol. 35 (2019) 1455-1465.
DOI |
[49] |
P. Deng, Q. peng, EH. Han, W. Ke, C. SUN, J. Mater. Sci. Technol. 65 (2021) 61-71.
DOI URL |
[50] |
D. Liu, J. Cui, X. Xu, K. Fan, A. Ma, J. Mater. Sci. Technol. 84 (2021) 105-115.
DOI URL |
[51] |
J.C. Haley, S.A. Briggs, P.D. Edmondson, K. Sridharan, S.G. Roberts, S. Lozano-Perez, K.G. Field, Acta Mater. 136 (2017) 390-401.
DOI URL |
[52] | Y.P. Li, M.S. Yu, G. Ran, N. Gao, Y. Chen, Q. Han, H. Wang, Z.H. Zhou, J.C. Huang, Mater. Today Energy 21 (2021) 100788. |
[53] |
Y. Chen, Y.P. Li, G. Ran, G. Li, K. He, Q. Han, H. Wang, X.Y. Huang, J. Nucl. Mater. 555 (2021) 153126.
DOI URL |
[54] |
K. Murakami, H. Abe, Z.C. Li, et al., Acta Mater. 163 (2019) 78-90.
DOI URL |
[55] | M.J. Huang, Y.P. Li, G. Ran, Z.B. Yang, P.H. Wang, J. Nucl. Mater. 528 (2020) 152240. |
[56] |
Y.E. Kupriiyanova, V.V. Bryk, O.V. Borodin, A.S. Kalchenko, V.N. Voyevodin, G. D. Tolstolutskaya, F.A. Garner, J. Nucl. Mater. 468 (2016) 264-273.
DOI URL |
[57] | K. Bawane, K. Lu, X.M. Bai, J. Hu, M. Li, P.M. Baldo, E. Ryan, J. Mater. Sci. Tech- nol. 71 (2021) 75-83. |
[58] |
S. Ishino, J. Nucl. Mater. 251 (1997) 225-236.
DOI URL |
[59] |
J. Brimhall, B. Mastel, Radiat. Eff. 3 (2) (1970) 203-215.
DOI URL |
[60] |
V. Sikka, J. Moteff, J. Nucl. Mater. 46 (2) (1973) 217-219.
DOI URL |
[61] |
M. Wen, N.M. Ghoniem, Philos. Mag. 85 (22) (2005) 2561-2580.
DOI URL |
[62] |
X. Yi, M.L. Jenkins, K. Hattar, P.D. Edmondson, S.G. Roberts, Acta Mater. 92 (2015) 163-177.
DOI URL |
[63] | R. Barnes, D. Mazey, Metallurgy 11 (4) (1963) 281-286. |
[64] |
Z. Zhang, K. Yabuuchi, A. Kimura, J. Nucl. Mater. 480 (2016) 207-215.
DOI URL |
[65] |
S. Dudarev, K. Arakawa, X. Yi, Z. Yao, M. Jenkins, M. Gilbert, P. Derlet, J. Nucl. Mater. 455 (1) (2014) 16-20.
DOI URL |
[66] |
J. Marian, B. Wirth, J.M. Perlado, Phys. Rev. Lett. 88 (2002) 255507.
DOI URL |
[67] |
D.J. Bacon, Y.N. Osetsky, R. Stoller, R.E. Voskoboinikov, J. Nucl. Mater. 323 (2003) 152-162.
DOI URL |
[68] |
K. Arakawa, M. Hatanaka, E. Kuramoto, K. Ono, H. Mori, Phys. Rev. Lett. 96 (2006) 125506.
DOI URL |
[69] | N. Gao, J. Chen, R.J. Kurtz, Z.G. Wang, R.F. Zhang, F. Gao, J. Phys. Condens. Mat- ter 29 (2017) 455301. |
[70] |
N. Gao, Z.W. Yao, G.H. Lu, H.Q. Deng, F. Gao, Nat. Commun. 12 (2021) 225.
DOI PMID |
[71] |
Y.P. Li, G. Ran, Q. Han, X. Yong, X.Y. Liu, X.Q. Ye, Scr. Mater. 203 (2021) 114047.
DOI URL |
[72] |
R.W.H.C Barcellini, S. Dumbill, S.E. Donnelly, E. Jimenez-Melero, J. Nucl. Mater. 514 (2019) 90-100.
DOI |
[73] |
A. Chartier, C. Onofri, L. Van Brutzel, C. Sabathier, O. Dorosh, J. Jagielski, Appl. Phys. Lett. 109 (2016) 181902.
DOI URL |
[74] |
W.Y Chen, J.G Wen, M.A. Kirk, Y.B Miao, B. Ye, B.R. Kleinfeldt, A.J. Oaks, J.F. Stubbins, Philos. Mag. 93 (2013) 4569-4581.
DOI URL |
[75] |
R.Y. Zheng, W.Z. Han, Acta Mater. 186 (2020) 162-171.
DOI URL |
[76] |
K. Arakawa, M. Hatanaka, E. Kuramoto, K. Ono, H. Mori, Phys. Rev. Lett. 96 (2006) 125506.
DOI URL |
[77] |
S.H. Li, J.T. Li, W.Z. Han, Materials 12 (2019) 1036.
DOI URL |
[78] |
D. Nguyen-Manh, S.L. Dudarev, Nucl. Instrum. Methods Phys. Res. B 352 (2015) 86-91.
DOI URL |
[79] |
F. Zhou, J. Fang, H. Deng, J. Liu, S. Xiao, X. Shun, F. Gao, J. Nucl. Mater. 467 (2015) 398-405.
DOI URL |
[80] |
Y.H. Li, H.B. Zhou, G.H. Lu, Int. J. Hydrog. Energy 42 (2017) 6902-6917.
DOI URL |
[81] |
W.D. Wilson, C.L. Bisson, M.I. Baskes, Phys Rev. B 24 (1981) 5616.
DOI URL |
[82] |
K. Ohsawa, J. Goto, M. Yamakami, M. Ya.maguchi, M. Yagi, Phys. Rev. B 82 (2010) 184117.
DOI URL |
[83] |
Y.L. Liu, Y. Zhang, H.B. Zhou, G.H. Lu, F. Liu, G.N. Luo, Phys. Rev. B 79 (2009) 172103.
DOI URL |
[84] | Y.W. You, X.S. Kong, X.B. Wu, Nucl. Fusion 54 (2014) 103007. |
[85] | Y.W. You, X.S. Kong, X.B. Wu, C.S. Liu, J.L. Chen, G.N. Luo, Nucl. Fusion 57 (2017) 016006. |
[86] |
O.V. Ogorodnikova, B. Tyburska, V.K. Alimov, K. Ertl, J. Nucl. Mater. 415 (2011) S661-S666.
DOI URL |
[1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[2] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[3] | Kwang Kyu Ko, Hyo Ju Bae, Eun Hye Park, Hyeon-Uk Jeong, Hyoung Seok Park, Jae Seok Jeong, Jung Gi Kim, Hyokyung Sung, Nokeun Park, Jae Bok Seol. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47% [J]. J. Mater. Sci. Technol., 2022, 117(0): 225-237. |
[4] | F. Liu, Z.Y. Liu, G.Y. He, L.N. Ou. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy [J]. J. Mater. Sci. Technol., 2022, 118(0): 1-14. |
[5] | Vladimir Krsjak, Tielong Shen, Jarmila Degmova, Stanislav Sojak, Erik Korpas, Pavol Noga, Werner Egger, Bingsheng Li, Vladimir Slugen, Frank A. Garner. On the helium bubble swelling in nano-oxide dispersion-strengthened steels [J]. J. Mater. Sci. Technol., 2022, 105(0): 172-181. |
[6] | Yeonju Oh, Won-Seok Ko, Nojun Kwak, Jae-il Jang, Takahito Ohmura, Heung Nam Han. Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten [J]. J. Mater. Sci. Technol., 2022, 105(0): 242-258. |
[7] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[8] | Weichao Bao, Xin-Gang Wang, Ying Lu, Ji-Xuan Liu, Shikuan Sun, Guo-Jun Zhang, Fangfang Xu. Effect of native carbon vacancies on evolution of defects in ZrC1-x under He ion irradiation and annealing [J]. J. Mater. Sci. Technol., 2022, 119(0): 87-97. |
[9] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
[10] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[11] | Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten [J]. J. Mater. Sci. Technol., 2022, 106(0): 33-40. |
[12] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[13] | Yipeng Li, Guang Ran, Xinyi Liu, Qing Han, Xiuyin Huang, Yifan Ding. In-situ TEM investigation of dislocation loop reaction and irradiation hardening in H2+-He+ dual-beam irradiated Mo [J]. J. Mater. Sci. Technol., 2022, 107(0): 14-25. |
[14] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Quantitative reorientation behaviors of macro-twin interfaces in shape-memory alloy under compression stimulus in situ TEM [J]. J. Mater. Sci. Technol., 2022, 107(0): 243-251. |
[15] | Z. QU, Z.J. Zhang, J.X. Yan, P. Zhang, B.S. Gong, S.L. Liu, Z.F. Zhang, T.G. Langdan. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 54-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||