J. Mater. Sci. Technol. ›› 2022, Vol. 108: 244-255.DOI: 10.1016/j.jmst.2021.08.041
• Research Article • Previous Articles Next Articles
L.R. Zenga,b, L.M. Leic, X.M. Luoa, G.P. Zhanga,*()
Received:
2021-06-17
Revised:
2021-08-21
Accepted:
2021-08-24
Published:
2021-10-23
Online:
2021-10-23
Contact:
G.P. Zhang
About author:
* E-mail address: gpzhang@imr.ac.cn (G.P. Zhang).L.R. Zeng, L.M. Lei, X.M. Luo, G.P. Zhang. Toward an understanding of dwell fatigue damage mechanism of bimodal Ti-6Al-4V alloys[J]. J. Mater. Sci. Technol., 2022, 108: 244-255.
Fig. 2. Inverse pole figure coded with respect to the loading direction of the microstructure of the Ti-6Al-4V alloys with different Vαp: (a) 36%, (b) 50%, (c) 60% and (d) 76%.
Thermal treatment | Vαp (%) | Y.S. (MPa) | dαp (μm) | wαs (nm) | |
---|---|---|---|---|---|
945 °C × 1 h | + 700 °C × 2 h | 36 | 963 ± 23 | 7.1 ± 2.5 | 368.7 ± 103.4 |
930 °C × 1 h | 50 | 929 ± 19 | 9.5 ± 3.3 | 335.9 ± 91.73 | |
915 °C × 1 h | 60 | 901 ± 18 | 8.2 ± 2.4 | 335.3 ± 119.8 | |
895 °C × 1 h | 76 | 870 ± 20 | 7.7 ± 2.6 | 252.3 ± 74.2 |
Table 1. Characteristic Vαp, yield strength, size of αp phase and the width of lamellar αs phase in the Ti-6Al-4V alloys subjected to different heat treatments.
Thermal treatment | Vαp (%) | Y.S. (MPa) | dαp (μm) | wαs (nm) | |
---|---|---|---|---|---|
945 °C × 1 h | + 700 °C × 2 h | 36 | 963 ± 23 | 7.1 ± 2.5 | 368.7 ± 103.4 |
930 °C × 1 h | 50 | 929 ± 19 | 9.5 ± 3.3 | 335.9 ± 91.73 | |
915 °C × 1 h | 60 | 901 ± 18 | 8.2 ± 2.4 | 335.3 ± 119.8 | |
895 °C × 1 h | 76 | 870 ± 20 | 7.7 ± 2.6 | 252.3 ± 74.2 |
Fig. 3. TEM micrographs of the αs phase in the alloy with (a) Vαp = 36% and (b) Vαp = 76%. (c) Statistical distribution of the width of αs phase in the Ti-6Al-4V alloys with different Vαp. (d) Electron diffraction pattern of αs phase with ultra-thin layer β phase, indicating the existence of the Burgers orientation relationship between αs and the β phases.
Fig. 5. Evolution of damage behavior of the Vαp = 36% specimens under (a-c) pure fatigue and (d-f) dwell fatigue; of the Vαp = 76% specimens under (g-i) pure fatigue and (j-l) dwell fatigue. Ori: the specimen before loading. Nf: the number of cycles to failure (total fatigue life), and xNf: a fraction of the total fatigue life (x = 0.47, 0.39, 0.42, and 0.6). Loading is along the horizontal direction.
Fig. 6. Damage behavior nearby the fracture under pure fatigue with (a) Vαp = 36% and (b) Vαp = 76%; under dwell fatigue with (c) Vαp = 36% and (d) Vαp = 76%, respectively. (e) Crack density (ρ) in the αs phase under pure fatigue and dwell fatigue loading as a function of Vαp.
Fig. 7. Fracture feature under pure fatigue loading of Vαp = 36% specimen at (a) crack initiation region, (b) crack growth region; Vαp = 76% specimen at (c) crack initiation region, (d) crack growth region. Fracture feature under dwell fatigue loading of Vαp = 36% specimen at (e) crack initiation region, (f) crack growth region; Vαp = 76% specimen at (g) crack initiation region, (h) crack growth region.
Fig. 8. (a) Surface height variation of Vαp = 36% specimen subjected to different dwell fatigue cycles. Line scanning is along the dash line in the SEM image, and every scanning is at the same location. (b) Schematic illustration of fractal dimension, and the curve is a close observation of the dash-line region in (a).
Fig. 9. Fractal dimension increment with fatigue cycles in specimens with Vαp = 36% under (a) pure fatigue, (b) dwell fatigue, and in specimens with Vαp = 76% under (c) pure fatigue, (d) dwell fatigue.
Fig. 10. Microstructure connectivity in the specimens with two types of combination of configurations of the αp and αs phases: (a) low and (b) high volume fraction of the αp phase under pure fatigue loading, (c) low and (d) high volume fraction of the αp phase under dwell fatigue loading.
Fig. 11. (a) Maxwell model, (b) diagrammatic sketch of plastic deformation of the αs phase, (c) stress variation with time during one dwell fatigue cycle.
[1] |
J.C. Williams, E.A. Starke, Acta Mater. 51 (2003) 5775-5799.
DOI URL |
[2] | R. Boyer, G. Welsch, E. Collings, Materials Properties Handbook: Titanium al- loys, ASM International, Materials Park, Ohio, 2004. |
[3] |
R. Boyer, Mater. Sci. Eng. A 213 (1996) 103-114.
DOI URL |
[4] |
W. Evans, C. Gostelow, Metall. Trans. A 10 (1979) 1837-1846.
DOI URL |
[5] |
M.R. Bache, M. Cope, H.M. Davies, W.J. Evans, G. Harrison, Int. J. Fatigue 19 (1997) 83-88.
DOI URL |
[6] |
Z. Song, D.W. Hoeppner, Int. J. Fatigue 11 (1989) 85-90.
DOI URL |
[7] |
M. Bache, Int. J. Fatigue 25 (2003) 1079-1087.
DOI URL |
[8] |
G. Xi, J. Lei, J. Qiu, Y. Ma, R. Yang, Mater. Des. 194 (2020) 108909.
DOI URL |
[9] |
J.K. Qiu, Y.J. Ma, J.F. Lei, Y.Y. Liu, A.J. Huang, D. Rugg, R. Yang, Metall. Mater. Trans. A 45 (2014) 6075-6087.
DOI URL |
[10] | Transportation Safety Board of Canada, Uncontained Engine Failure, Report No. A97f0059, 1997. |
[11] |
M.R. Bache, W.J. Evans, H.M. Davies, J. Mater. Sci. 32 (1997) 3435-3442.
DOI URL |
[12] |
D. Davidson, D. Eylon, Metall. Trans. A 11 (1980) 837-843.
DOI URL |
[13] |
W.J. Evans, M.R. Bache, Int. J. Fatigue 16 (1994) 443-452.
DOI URL |
[14] |
F. Dunne, D. Rugg, A. Walker, Int. J. Plast. 23 (2007) 1061-1083.
DOI URL |
[15] | F. Dunne, A. Walker, D. Rugg, Proc. R. Soc. A 463 (2007) 1467-1489. |
[16] |
F. Dunne, D. Rugg, Fatigue Fract. Eng Mater. Struct. 31 (2008) 949-958.
DOI URL |
[17] |
L. Germain, N. Gey, M. Humbert, P. Bocher, M. Jahazi, Acta Mater. 53 (2005) 3535-3543.
DOI URL |
[18] |
A.L. Pilchak, Scr. Mater. 74 (2014) 68-71.
DOI URL |
[19] |
J. Kumar, A.K. Singh, S.G.S. Raman, V. Kumar, Metall. Mater. Trans. A 48 (2017) 648-658.
DOI URL |
[20] | A.L. Pilchak, J.C. Williams, Metall. Mater. Trans. A 42 (2011) 10 0 0-1027. |
[21] |
V. Hasija, S. Ghosh, M.J. Mills, D.S. Joseph, Acta Mater. 51 (2003) 4533-4549.
DOI URL |
[22] |
T.S. Jun, D.E. Armstrong, T.B. Britton, J. Alloy. Compd. 672 (2016) 282-291.
DOI URL |
[23] |
T.S. Jun, Z. Zhang, G. Sernicola, F.P. Dunne, T.B. Britton, Acta Mater. 107 (2016) 298-309.
DOI URL |
[24] |
M.S. Lee, Y.T. Hyun, T.S. Jun, J. Alloy. Compd. 803 (2019) 711-720.
DOI URL |
[25] |
Z. Zhang, F.P.E. Dunne, Int. J. Fatigue 113 (2018) 324-334.
DOI URL |
[26] |
S. Waheed, Z. Zheng, D.S. Balint, F.P.E. Dunne, Acta Mater. 162 (2019) 136-148.
DOI |
[27] |
F. McBagonluri, E. Akpan, C. Mercer, W. Shen, W.O. Soboyejo, Mater. Sci. Eng. A 405 (2005) 111-134.
DOI URL |
[28] |
G.Q. Wu, C.L. Shi, W. Sha, A.X. Sha, H.R. Jiang, Mater. Des. 46 (2013) 668-674.
DOI URL |
[29] |
L.R. Zeng, L.M. Lei, J. Yang, X.M. Luo, G.P. Zhang, Adv. Eng. Mater. 20 (2018) 1700702.
DOI URL |
[30] |
V. Chandravanshi, K. Prasad, V. Singh, A. Bhattacharjee, V. Kumar, Int. J. Fatigue 91 (2016) 100-109.
DOI URL |
[31] |
X. Li, T. Sugui, B. Xianyu, C. Liqing, Mater. Sci. Eng. A 559 (2013) 401-406.
DOI URL |
[32] |
B.S.S.C. Rao, M. Srinivas, S.V. Kamat, Mater. Sci. Eng. A 520 (2009) 29-35.
DOI URL |
[33] |
W.J. Evans, Mater. Sci. Eng. A 263 (1999) 160-175.
DOI URL |
[34] |
M.L. Thomsen, D.W. Hoeppner, Int. J. Fatigue 20 (1998) 309-317.
DOI URL |
[35] | P. Lefranc, V. Doquet, M. Gerland, C. Sarrazin-Baudoux. Acta Mater. 56 (2008) 4 450-4 457. |
[36] |
E. Uta, N. Gey, P. Bocher, M. Humbert, J. Gilgert, J. Microsc. 233 (2009) 451-459.
DOI URL |
[37] |
A. Bauer, S. Neumeier, F. Pyczak, M. Göken, Scr. Mater. 63 (2010) 1197-1200.
DOI URL |
[38] | G.W. Gee, D. Or, Phys. Methods 5 (2002) 255-293. |
[39] |
Z. Zhang, F.P.E. Dunne, J. Mech. Phys. Solids 103 (2017) 199-220.
DOI URL |
[40] |
Z. Zheng, D.S. Balint, F.P.E. Dunne, Int. J. Plast. 87 (2016) 15-31.
DOI URL |
[41] |
T. Shinko, T. Nakamura, N. Fujimura, Y. Nakata, J. Soc. Mat. Sci. 64 (2015) 910-917.
DOI URL |
[42] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI PMID |
[43] |
L. Wang, Z. Wang, W. Xie, X. Song, Int. J. Fatigue 45 (2012) 1-7.
DOI URL |
[44] |
M. Wang, B. Zhang, G.P. Zhang, C.S. Liu, Appl. Phys. Lett. 99 (2011) 011910.
DOI URL |
[45] |
A. Majumdar, B. Bhushan, J. Tribol. 112 (1990) 205-216.
DOI URL |
[46] |
M.E. Kassner, Y. Kosaka, J.A. Hall, Metall. Mater. Trans. A 30 (1999) 2383-2389.
DOI URL |
[47] |
Z. Zheng, S. Waheed, D.S. Balint, F.P.E. Dunne, Int. J. Plast. 104 (2018) 23-38.
DOI URL |
[48] | J. Qiu, Y. Ma, J. Lei, Y. Liu, A. Huang, D. Rugg, R. Yang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45A (2014) 6075-6087. |
[49] | K.S. Chan, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35A (11) (2004) 3409-3422. |
[50] | M. Savage, J. Tatalovich, M. Zupan, K. Hemker, M. Mills, Mater. Sci. Eng. A 319 (2001) 398-403. |
[51] |
J. Yang, Z.M. Song, L.M. Lei, G.P. Zhang, Mater. Sci. Eng. A 617 (2014) 84-88.
DOI URL |
[52] |
Z. Zhang, T.S. Jun, T.B. Britton, F.P. Dunne, Acta Mater. 118 (2016) 317-330.
DOI URL |
[53] | B.A. Lerch, Viscoelastic Response of the Titanium Alloy Ti-6-4: Experimental Identification of Time-and Rate-Dependent Reversible and Irre- versible Deformation Regions, NASA, 2014/TM-2014-216584. |
[54] | M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Cambridge Uni- versity Press, Cambridge, 2009. |
[55] | D. Hull, D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2001. |
[56] | B.A. Lerch, S.M. Arnold, Viscoplastic Characterization of Ti-6-4: Experiments, NASA/TM-2016-218864,2016. |
[1] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[2] | Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches [J]. J. Mater. Sci. Technol., 2022, 104(0): 202-213. |
[3] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[4] | Ruishan Xie, Qingyu Shi, Gaoqiang Chen. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model [J]. J. Mater. Sci. Technol., 2020, 59(0): 83-91. |
[5] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[6] | Blum W., Eisenlohr P.. Deformation Strength of Nanocrystalline Thin Films [J]. J. Mater. Sci. Technol., 2017, 33(7): 718-722. |
[7] | Xifeng LI, Kaifeng ZHANG, Changli WANG, Wenbo HAN, Guofeng WANG. Microstructural and Microhardness Variation of Amorphous Fe78Si9B13 Alloy during Bend Stress Relaxation [J]. J Mater Sci Technol, 2007, 23(02): 253-256. |
[8] | Yong LIU, Jingchuan ZHU, Zhongda YIN, Mingwei LI. Effect of Triple Annealing Treatment on Stress Relaxation of Ti-6Al-4V Alloy [J]. J Mater Sci Technol, 2004, 20(03): 292-294. |
[9] | TONG Xiaoyan ** Aircraft Engineering Department,Northwestern Polytechnical University,Xi'an,710072,China. Energetical Theories on Fatigue Life Prediction [J]. J Mater Sci Technol, 1992, 8(4): 266-272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||