J. Mater. Sci. Technol. ›› 2022, Vol. 108: 125-132.DOI: 10.1016/j.jmst.2021.08.061
• Research Article • Previous Articles Next Articles
Received:
2021-05-30
Revised:
2021-08-19
Accepted:
2021-08-20
Published:
2021-10-27
Online:
2021-10-27
Contact:
Yanxin Zhuang
About author:
* E-mail address: yxzhuang@epm.neu.edu.cn (Y. Zhuang).Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening[J]. J. Mater. Sci. Technol., 2022, 108: 125-132.
Fig. 1. Engineering stress-strain curves (a) of three alloys and uniform elongation versus yield strength of Co51Cr25Al8Fe8Ni8 alloy in comparison with previous FCC based TRIP HEAs (light blue area) and FCC alloys with precipitation strengthening (lime green area) (b). The grey stars in (a) denote the interrupted test for TEM and EBSD observation (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 2. EBSD and TEM results showing different microstructure in the annealed alloy: (a) EBSD phase-map displaying the distribution of FCC and NiAl phase, solid lines in the phase-map indicate the various boundary. (b) bright-field TEM (BFTEM) image of stacking faults. (c) BFTEM images of NiAl (grain 1 and 2) and FCC matrix, the insert SADP confirmed that there is a K-S relationship between grain 1 and matrix, and the corresponding interface (solid blue lines) is shown in (d). ∑3 twin (e, f) also exists in the annealed alloy (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 4. Low angle annular dark field (LAADF) images showing the visibility of partial dislocations in the case of corresponding operation vectors: (a) both the partial dislocations are visible and the width marked as 6.59 nm, (b) Only the dislocation above is visible, (c) another dislocation is visible.
Fig. 5. EBSD images showing the distribution of phases (red: FCC, yellow: NiAl, aqua: HCP) and ∑3 twin boundaries (lime green) under different strains ((a-f) represents local strain of 0, 10%, 20%, 30%, 40% and > 50% respectively). TD is the transverse direction and RD is rolling direction (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 7. TEM and HAADF-STEM images showing the interaction of stacking faults with themselves (a, b), twin boundary (c, d) and NiAl phase (e) after ~10% deformation. The inserted SADP in (a) are shown to highlight the streaky lines due to edge-on SFs.
Fig. 8. HAADF-STEM images showing the nucleation position (a: stacking faults, b: ∑3 twin boundaries) of HCP phase after ~20% deformation (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
[1] |
Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, H. Gao, Nat. Commun. 5 (2014) 3580.
DOI URL |
[2] |
R.O. Ritchie, Nat. Mater. 10 (2011) 817-822.
DOI PMID |
[3] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[4] | S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 4 4 4-458. |
[5] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[6] |
M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, D. Raabe, Acta Mater. 79 (2014) 268-281.
DOI URL |
[7] |
M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, D. Raabe, Acta Mater. 85 (2015) 216-228.
DOI URL |
[8] |
S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52 (2004) 2765-2778.
DOI URL |
[9] |
L. Morales-Rivas, H.W. Yen, B.M. Huang, M. Kuntz, F.G. Caballero, J.R. Yang, C. Garcia-Mateo, JOM 67 (2015) 2223-2235.
DOI URL |
[10] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[11] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[12] |
D. Wei, X. Li, W. Heng, Y. Koizumi, F. He, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Mater. Res. Lett. 7 (2019) 82-88.
DOI URL |
[13] |
F.G. Coury, D. Santana, Y.F. Guo, J. Copley, L. Otani, S. Fonseca, G. Zepon, C. Kiminami, M. Kaufman, A. Clark, Scr. Mater. 173 (2019) 70-74.
DOI URL |
[14] | S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, J. Alloy. Compd. 792 (2019) 4 4 4-455. |
[15] |
H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29 (2017) 1701678.
DOI URL |
[16] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[17] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C. T. Liu, J.J. Kai, Acta Mater. 138 (2017) 72-82.
DOI URL |
[18] |
Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, E.J. Lavernia, Sci. Adv. 4 (2018) eaat8712.
DOI URL |
[19] |
Y.J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, H. Cai, Nat. Commun. 9 (2018) 4063.
DOI URL |
[20] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI |
[21] |
X.H. Du, W.P. Li, H.T. Chang, T. Yang, G.S. Duan, B.L. Wu, J.C. Huang, F.R. Chen, C. T. Liu, W.S. Chuang, Y. Lu, M.L. Sui, E.W. Huang, Nat. Commun. 11 (2020) 2390.
DOI PMID |
[22] |
T. Zheng, X.B. Hu, F. He, Q.F. Wu, B. Han, D. Chen, J.J Li, Z.J. Wang, J.C. Wang, J.J Kai, Z.H. Xia, C.T. Liu, J. Mater. Sci. Technol. 69 (2021) 156-167.
DOI |
[23] |
D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srinivasan, R.S. Mishra, R. Banerjee, Acta Mater. 165 (2019) 420-430.
DOI |
[24] |
W. Wang, W. Zhou, S. Song, K.M. Reddy, X. Wang, J. Alloy. Compd. 821 (2020) 153445.
DOI URL |
[25] |
D. Choudhuri, S. Shukla, W.B. Green, B. Gwalani, V. Ageh, R. Banerjee, R.S. Mishra, Mater. Res. Lett. 6 (2018) 171-177.
DOI URL |
[26] |
B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao, Acta Mater. 205 (2021) 116561.
DOI URL |
[27] |
S. Shukla, D. Choudhuri, T. Wang, K. Liu, R. Wheeler, S. Williams, B. Gwalani, R.S. Mishra, Mater. Res. Lett. 6 (2018) 676-682.
DOI URL |
[28] |
G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P. George, Acta Mater. 161 (2018) 338-351.
DOI URL |
[29] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
[30] |
Y. Yin, D. Kent, Q.Y Tan, M. Bermingham, M.X. Zhang, J. Mater. Sci. Technol. 51 (2020) 173-179.
DOI |
[31] |
H. Jiang, L. Jiang, D.X. Qiao, Y.P. Lu, T.M. Wang, Z.Q. Cao, T.J. Li, J. Mater. Sci. Technol. 33 (7) (2017) 712-717.
DOI |
[32] |
G. Qin, S. Wang, R.R. Chen, X. Gong, L. Wang, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 34 (2) (2018) 365-369.
DOI URL |
[33] |
D.T. Pierce, J.A. Jimenez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater. 68 (2014) 238-253.
DOI URL |
[34] |
A.J. Zaddach, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 636 (2015) 373-378.
DOI URL |
[35] |
G. Casillas, A.A. Gazder, E.V. Pereloma, A.A. Saleh, Mater. Charact. 123 (2017) 275-281.
DOI URL |
[36] |
F. He, Z.J. Wang, Q.F. Wu, D. Chen, T. Yang, J.J. Li, J.C. Wang, C.T. Liu, J.J. Kai, Scr. Mater. 155 (2018) 134-138.
DOI URL |
[37] |
D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Scr. Mater. 165 (2019) 39-43.
DOI URL |
[38] |
B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao, Acta Mater. 205 (2021) 116561.
DOI URL |
[39] | S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544 (2017) 1-5 0 0 0. |
[40] |
S.H. Kim, H. Kim, N.J. Kim, Nature 518 (2015) 77-79.
DOI URL |
[41] |
X. Wang, W. Zhou, P. Liu, S. Song, K.M. Reddy, Scr. Mater. 162 (2019) 161-165.
DOI URL |
[42] |
D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srinivasan, R.S. Mishra, R. Banerjee, Acta Mater. 165 (2019) 420-430.
DOI |
[43] |
T.M. Smith, M.S. Hooshmand, S.D. Esser, F. Otto, D.W. McComb, E.P. George, M. Ghazisaeidi, M.J. Mills, Acta Mater. 110 (2016) 352-363.
DOI URL |
[44] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A. M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[1] | Hongmei Jin, Renguo Guan, Xianxiang Huang, Ying Fu, Jin Zhang, Xiaolin Chen, Yu Wang, Fei Gao, Di Tie. Understanding the precipitation mechanism of copper-bearing phases in Al-Mg-Si system during thermo-mechanical treatment [J]. J. Mater. Sci. Technol., 2022, 96(0): 226-232. |
[2] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[3] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[4] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
[5] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[6] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[7] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
[8] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[9] | Yunjian Bai, Heng Jiang, Kuo Yan, Maohui Li, Yanpeng Wei, Kun Zhang, Bingchen Wei. Phase transition and heterogeneous strengthening mechanism in CoCrFeNiMn high-entropy alloy fabricated by laser-engineered net shaping via annealing at intermediate-temperature [J]. J. Mater. Sci. Technol., 2021, 92(0): 129-137. |
[10] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[11] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[12] | Min Cheol Jo, Selim Kim, Dong Woo Suh, Hong Kyu Kim, Yong Jin Kim, Seok Su Sohn, Sunghak Lee. Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel [J]. J. Mater. Sci. Technol., 2021, 84(0): 219-229. |
[13] | Bin Liu, Jifeng Wu, Yanwei Cui, Qinqing Zhu, Guorui Xiao, Siqi Wu, Guang-han Cao, Zhi Ren. Structural evolution and superconductivity tuned by valence electron concentration in the Nb-Mo-Re-Ru-Rh high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 85(0): 11-17. |
[14] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
[15] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||