J. Mater. Sci. Technol. ›› 2022, Vol. 97: 10-19.DOI: 10.1016/j.jmst.2021.04.030
• Research Article • Previous Articles Next Articles
Young-Kyun Kima, Min-Chul Kimb, Kee-Ahn Leea,*()
Received:
2021-01-12
Revised:
2021-03-18
Accepted:
2021-04-14
Published:
2021-06-17
Online:
2021-06-17
Contact:
Kee-Ahn Lee
About author:
* Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea. E-mail address: keeahn@inha.ac.kr (K.-A. Lee).Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion[J]. J. Mater. Sci. Technol., 2022, 97: 10-19.
Fig. 2. (a) BSE image showing the substructure and nano-scale precipitates, (b) ECC image showing the dislocation-induced substructure, (c) TEM image of in-situ formed oxide and (d) corresponding EDS line profile result.
Fig. 3. Mechanical properties of SLM-built HEA matrix nanocomposite: (a) stress-strain curves, (b) impact toughness values, (c) true stress-strain curves and (d) work hardening rates at 298 K and 77 K. Here, σy and σu indicate the yield strength and ultimate tensile strength.
Temperature (K) | Sample | Yield strength (GPa) | Tensile strength (GPa) |
---|---|---|---|
298 | L-PBF HEA (present alloy) | 0.77 | 0.92 |
Conventionally processed HEA [ | 0.26 | 0.60 | |
77 | L-PBF HEA (present alloy) | 1.15 | 1.45 |
Conventionally processed HEA [ | 0.46 | 1.06 |
Table 1 Tensile tests data at 298 K and 77 K in the additively manufactured- and conventionally processed-CrMnFeCoNi HEAs.
Temperature (K) | Sample | Yield strength (GPa) | Tensile strength (GPa) |
---|---|---|---|
298 | L-PBF HEA (present alloy) | 0.77 | 0.92 |
Conventionally processed HEA [ | 0.26 | 0.60 | |
77 | L-PBF HEA (present alloy) | 1.15 | 1.45 |
Conventionally processed HEA [ | 0.46 | 1.06 |
Fig. 6. Tensile deformed microstructures (cross-sectional) at 298 K (a1, a2 and c) and 77 K (b1, b2 and d); (a1, b1) are band contrast maps, (a2, b2) are IPF maps, and (c,d) are ECC images.
Fig. 8. Results of the EBSD analysis near the notch-tip of the Charpy impact specimens fractured at 298 K (a) and 77 K (b). (a1, b1) band contrast maps, (a2, b2) GND distribution maps, and (a3, b3) IPF maps.
Fig. 9. ECC images of Charpy impact specimens fractured at (a1, a2) 298 K and (b1, b2) 77 K. (a1, b1) microstructures near the notch-tip and (a2, b2) microstructures near the propagation area.
[1] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater 117 (2016) 371-392.
DOI URL |
[2] |
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Compos. Pt. B-Eng. 143 (2018) 172-196.
DOI URL |
[3] |
K.-.A. Lee, Y.-.K. Kim, J.-.H. Yu, S.-.H. Park, M.-.C. Kim, Arch. Metall. Mater. 62 (2017) 1341-1346.
DOI URL |
[4] |
A. Bandyopadhyay, B. Heer, Mater. Sci. Eng. R 129 (2018) 1-16.
DOI URL |
[5] |
Y.-.K. Kim, S.-.J. Youn, S.-.W. Kim, J. Hong, K.-.A. Lee, Mater. Sci. Eng. A 763 (2019) 138138.
DOI URL |
[6] |
I. Paoletti, Procedia Eng. 180 (2017) 1150-1159.
DOI URL |
[7] |
S.K. Everton, M. Hirsch, P.I. Stavroulakis, R.K. Leach, A.T. Clare, Mater. Des. 95 (2016) 431-445.
DOI URL |
[8] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[9] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[10] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A (2004) 213-218. |
[11] |
G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu, J. Mater. Sci. Technol. 35 (2019) 578-583.
DOI URL |
[12] |
L. Jiang, Y. Lu, W. Wu, Z. Cao, T. Li, J. Mater. Sci. Technol. 32 (2016) 245-250.
DOI |
[13] |
Y. Zhao, D.-.H. Lee, M.-.Y. Seok, J.-.A. Lee, M.P. Phaniraj, J.-.Y. Suh, H.-.Y. Ha, J.-.Y. Kim, U. Ramamurty, J.-.I. Jang, Scr. Mater. 135 (2017) 54-58.
DOI URL |
[14] |
Y.-.K. Kim, G.-.S. Ham, H.S. Kim, K.-.A. Lee, Intermetallics 111 (2019) 106486.
DOI URL |
[15] |
H. Luo, Z. Li, D. Raabe, Sci. Rep. 7 (2017) 9892.
DOI URL |
[16] |
Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Appl. Surf. Sci. 396 (2017) 1420-1426.
DOI URL |
[17] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater 118 (2016) 152-163.
DOI URL |
[18] |
M.V. Klimova, A.O. Semenyuk, D.G. Shaysultanov, G.A. Salishchev, S. V. Zherebtsov, N.D. Stepanov, J. Alloys Compd. 811 (2019) 152000.
DOI URL |
[19] |
G.-.H. Gwon, J.-.H. Kim, K.-.A. Lee, J. Nucl. Mater. 459 (2015) 205-216.
DOI URL |
[20] |
Z. Li, D. Raabe, JOM 69 (2017) 2099-2106.
DOI URL |
[21] |
Z. Li, Acta Mater 164 (2019) 400-412.
DOI URL |
[22] |
L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today 21 (2018) 354-361.
DOI URL |
[23] |
W. Wu, R. Zhou, B. Wei, S. Ni, Y. Liu, M. Song, Mater. Charact. 144 (2018) 605-610.
DOI URL |
[24] |
Y.-.K. Kim, S. Yang, K.-.A. Lee, Sci. Rep. 10 (2020) 8045.
DOI URL |
[25] |
Y.-.K. Kim, J. Choe, K.-.A. Lee, J. Alloys Compd. 805 (2019) 680-691.
DOI URL |
[26] | Y.-.K. Kim, S. Yang, K.-.A. Lee, Addit. Manuf. 36 (2020) 101543. |
[27] |
J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-.H. Yu, H.S. Kim, Mater. Res. Lett. 8 (2020) 1-7.
DOI URL |
[28] |
F. Yan, W. Xiong, E. Faierson, G.B. Olson, Scr. Mater. 155 (2018) 104-108.
DOI URL |
[29] | Y.-.K. Kim, M.-.S. Baek, S. Yang, K.-.A. Lee, Addit. Manuf. 38 (2021) 101832. |
[30] |
L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, Y. Sohn, Mater. Charact. 143 (2018) 5-17.
DOI URL |
[31] |
B. AlMangour, Y.-.K. Kim, D. Grzesiak, K.A. Lee, Compos. Pt. B-Eng. 156 (2019) 51-63.
DOI URL |
[32] |
S. Gorsse, C. Hutchinson, M. Goune, R. Banerjee, Sci. Technol. Adv. Mater. 18 (2017) 584-610.
DOI URL |
[33] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloys Compd. 746 (2018) 125-134.
DOI URL |
[34] |
J.C. Rao, H.Y. Diao, V. Ocelik, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J. D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M.D. Hosson, Acta Mater 131 (2017) 206-220.
DOI URL |
[35] |
I. Basu, V. Ocelik, J.T.M.D. Hosson, J. Mater. Res. 33 (2018) 3055-3076.
DOI URL |
[36] |
Y.P. Cai, G.J. Wang, Y.J. Ma, Z.H. Cao, X.K. Meng, Scr. Mater. 162 (2019) 281-285.
DOI URL |
[37] |
S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmstro $\ddot{m}$, L. Vitos, Scr. Mater. 108 (2015) 44-47.
DOI URL |
[38] | M. Kang, J.W. Won, K.R. Lim, S.H. Park, S.M. Seo, Y.S. Na, Korean J. Met. Mater. 55 (2017) 732-738. |
[39] |
D. Li, Y. Zhang, Intermetallics 70 (2016) 24-28.
DOI URL |
[40] |
M. Yang, L. Zhou, C. Wang, P. Jiang, F. Yuan, E. Ma, X. Wu, Scr. Mater. 172 (2019) 66-71.
DOI URL |
[41] |
X. Wu, M. Yang, P. Jiang, C. Wang, L. Zhou, F. Yuan, E. Ma, Scr. Mater. 178 (2020) 452-456.
DOI URL |
[42] |
C. Sun, S.L. Liu, R.D.K. Misra, Q. Li, D.H. Li, Mater. Sci. Eng. A 711 (2018) 484-491.
DOI URL |
[43] |
S.G. Lee, B. Kim, M.C. Jo, K.-.M. Kim, J. Lee, J. Bae, B.-.J. Lee, S.S. Sohn, S. Lee, J. Mater. Sci. Technol. 50 (2020) 21-30.
DOI URL |
[44] |
S.S. Sohn, S. Hong, J. Lee, B.-.C. Suh, S.-.K. Kim, B.-.J. Lee, N.J. Kim, S. Lee, Acta Mater 100 (2015) 39-52.
DOI URL |
[45] |
M.C. Jo, J. Park, S.S. Sohn, S. Kim, J. Oh, S. Lee, Mater. Sci. Eng. A 707 (2017) 65-72.
DOI URL |
[46] |
Y. Zhong, L.F. Rannar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui, Z. Shen, J. Nucl. Mater. 486 (2017) 234-245.
DOI URL |
[47] |
H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, S. Lee, Acta Mater 87 (2015) 332-343.
DOI URL |
[48] |
B. Kim, S.G. Lee, D.W. Kim, Y.H. Jo, J. Bae, S.S. Sohn, S. Lee, J. Alloys Compd. 815 (2020) 152407.
DOI URL |
[49] | M.P. Haines, N.J. Peter, S.S. Babu, E.A. Jagle, Addit. Manuf. 33 (2020) 101178. |
[50] | P. Deng, M. Karadge, R.B. Rebak, V.K. Gupta, B.C. Prorok, X. Lou, Addit. Manuf. 35 (2020) 101334. |
[1] | Lihe Qian, Zhi Li, Tongliang Wang, Dongdong Li, Fucheng Zhang, Jiangying Meng. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 69-84. |
[2] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[3] | Yue Wang, Siyuan Yang, Ting Zhou, Long Hou, Lansong Ba, Yves Fautrelle, Zhongming Ren, Yanyan Zhu, Zongbin Li, Xi Li. Microstructure evolution and mechanical behavior of Ni-rich Ni-Mn-Ga alloys under compressive and tensile stresses [J]. J. Mater. Sci. Technol., 2022, 97(0): 113-122. |
[4] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[5] | Chuan Guo, Yang Zhou, Xinggang Li, Xiaogang Hu, Zhen Xu, Enjie Dong, Qiang Zhu, R. Mark Ward. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode [J]. J. Mater. Sci. Technol., 2021, 90(0): 45-57. |
[6] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[7] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[8] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[9] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[10] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[11] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[12] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[13] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[14] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
[15] | Shuting Cao, Yaqian Yang, Bo Chen, Kui Liu, Yingche Ma, Leilei Ding, Junjie Shi. Influence of yttrium on purification and carbide precipitation of superalloy K4169 [J]. J. Mater. Sci. Technol., 2021, 86(0): 260-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||