J. Mater. Sci. Technol. ›› 2021, Vol. 85: 18-29.DOI: 10.1016/j.jmst.2020.12.064
• Research Article • Previous Articles Next Articles
Wei Zhaoa,b,c, Tiantian Sheb, Jingyi Zhangb, Guoxiang Wanga,*(), Sujuan Zhangf, Wei Weia, Gang Yangc, Lili Zhangb,*(
), Dehua Xiae, Zhipeng Chengb, Haibao Huange, Dennis Y.C. Leungd,*(
)
Received:
2020-09-09
Revised:
2020-12-15
Accepted:
2020-12-31
Published:
2021-09-20
Online:
2021-02-08
Contact:
Guoxiang Wang,Lili Zhang,Dennis Y.C. Leung
About author:
ycleung@hku.hk (D.Y.C. Leung).Wei Zhao, Tiantian She, Jingyi Zhang, Guoxiang Wang, Sujuan Zhang, Wei Wei, Gang Yang, Lili Zhang, Dehua Xia, Zhipeng Cheng, Haibao Huang, Dennis Y.C. Leung. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism[J]. J. Mater. Sci. Technol., 2021, 85: 18-29.
Fig. 7. (a) Nitrogen adsorption-desorption isotherm of the samples; (b) The pore size distribution of the CeO2/g-C3N4-6; (c) UV-vis absorption spectra and (d-f) the plot of (αhν)2 vs energy hν and band gap energy of the samples.
Fig. 8. (a) Photocatalytic activities and (b) five recycling runs for BPA degradation, (c) TOC removal of BPS for the CeO2/g-C3N4-6; (d) Photocatalytic activities and (e) the stability for hydrogen evolution, (f) the effect of quenchers on the BPA degradation.
Fig. 11. (a) PL spectra and (b, c) TRPL spectra of the as-prepared samples. (d) Photocurrent, (e) electrochemical impedance spectroscopy and (f, g) Mott-Schottky curves of as-prepared samples.
Fig. 12. Crystal structures of (a) g-C3N4, and (b) CeO2. Calculated band structures and projected density of states of g-C3N4 (c and e) and CeO2 (d and f).
Fig. 13. VB-XPS spectra of the (a) g-C3N4 and (b) CeO2. The Fermi level EF is located at E =0 eV, as marked by the vertical dotted line. The work function of (c) g-C3N4, and (d) CeO2.
[1] |
Z. Jiang, H. Sun, T. Wang, B. Wang, W. Wei, H. Li, S. Yuan, T. An, H. Zhao, J. Yu, P. Wong, Energy Environ. Sci. 11 (2018) 2382-2389.
DOI URL |
[2] |
Q. Liu, Q. Zhang, L. Zhang, W. Dai, J. Mater. Sci. Technol. 54 (2020) 20-30.
DOI URL |
[3] |
W. Zhao, J. Li, T. She, S. Ma, Z. Cheng, G. Wang, P. Zhao, W. Wei, D. Xia, D.Y.C. Leung, J. Hazar. Mater. 402 (2021), 123839.
DOI URL |
[4] |
X. Shen, H. Shao, Y. Liu, Y. Zhai, J. Mater. Sci. Technol. 51 (2020) 1-7.
DOI URL |
[5] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017), 1601694.
DOI URL |
[6] | Y. Zhu, G. Zheng, Z. Dai, L. Zhang, Y. Ma, J. Mater. Sci. Technol. 33 (2017) 23-29. |
[7] |
W. Zhao, Y. Li, P. Zhao, L. Zhang, B. Dai, H. Huang, J. Zhou, Y. Zhu, K. Ma, D.Y.C. Leung, J. Hazard. Mater. 402 (2021), 123711.
DOI URL |
[8] |
L. Hu, Y. Liao, D. Xia, F. Peng, L. Tan, S. Hu, C. Zheng, X. Lu, C. He, D. Shu, Chem. Eng. J. 385 (2020), 123824.
DOI URL |
[9] |
S. Li, B. Xue, J. Chen, Y. Liu, J. Zhang, H. Wang, J. Liu, Sep. Purif. Technol. 254 (2021), 117579.
DOI URL |
[10] |
J. Zhang, G. Zhang, J. Zhang, J. Mater. Sci. Technol. 50 (2020) 147-152.
DOI |
[11] |
W. Wang, S. Zhu, Y. Cao, Y. Tao, X. Li, D. Pan, D.L. Phillips, D. Zhang, M. Chen, G. Li, H. Li, Adv. Funct. Mater. 29 (2019), 1901958.
DOI URL |
[12] |
R. He, H. Liu, H. Liu, D. Xu, L. Zhang, J. Mater. Sci. Technol. 52 (2020) 145-151.
DOI URL |
[13] |
W. Zhao, J. Li, B. Dai, Z. Cheng, J. Xu, K. Ma, L. Zhang, N. Sheng, G. Mao, H. Wu, K. Wei, D.Y.C. Leung, Chem. Eng. J. 369 (2019) 716-725.
DOI |
[14] |
J. Xiao, W. Yang, S. Gao, C. Sun, Q. Li, J. Mater. Sci. Technol. 34 (2018) 2331-2336.
DOI |
[15] |
G. Dong, L. Zhao, X. Wu, M. Zhu, F. Wang, Appl. Catal. B 245 (2019) 459-468.
DOI URL |
[16] |
W. Zhao, X. Tu, X. Wang, B. Dai, L. Zhang, J. Xu, Y. Feng, N. Sheng, F. Zhu, Chem. Eng. J. 361 (2019) 1173-1181.
DOI |
[17] |
M. Zhou, G. Dong, F. Yu, Y. Huang, Appl. Catal. B 256 (2019), 117825.
DOI URL |
[18] |
W. Zhao, J. Zhang, F. Zhu, F. Mu, L. Zhang, B. Dai, J. Xu, A. Zhu, C. Sun, D.Y.C. Leung, Chem. Eng. J. 361 (2019) 1352-1362.
DOI |
[19] |
C. Liu, X. Zhu, P. Wang, Y. Zhao, Y. Ma, J. Mater. Sci. Technol. 34 (2018) 931-941.
DOI URL |
[20] |
W. Zhao, B. Dai, F. Zhu, X. Tu, J. Xu, L. Zhang, S. Li, D. Leung, C. Sun, Appl. Catal. B 229 (2018) 171-180.
DOI URL |
[21] |
S. Gao, W. Yang, J. Xiao, B. Li, Q. Li, J. Mater. Sci. Technol. 35 (2019) 610-614.
DOI URL |
[22] |
Y. Zhu, J. Li, J. Cao, C. Lv, G. Huang, G. Zhang, Y. Xu, S. Zhang, P. Meng, T. Zhan, D. Yang, APL Mater. 8 (2020) 041108.
DOI URL |
[23] |
J.G. Yu, J.X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136 (2014) 8839-8842.
DOI URL |
[24] |
Y. Zhu, C. Lv, Z. Yin, J. Ren, X. Yang, C. Dong, H. Liu, R. Cai, Y. Huang, W. Theis, S. Shen, D. Yang, Angew. Chem. Int. Ed. 59 (2020) 868-873.
DOI URL |
[25] |
M. Hosseini, P. Sefidi, A. Mert, S. Kinayyigit, J. Mater. Sci. Technol. 38 (2020) 7-18.
DOI |
[26] |
W. Zhao, Y. Liu, Z. Wei, S. Yang, H. He, C. Sun, Appl. Catal. B 185 (2016) 242-252.
DOI URL |
[27] |
W. Yu, Y. Zheng, Y. Yu, J. Mater. Sci. Technol. 41 (2020) 149-158.
DOI URL |
[28] |
X. Wen, C. Niu, L. Zhang, C. Liang, G. Zeng, Appl. Catal. B 221 (2018) 701-714.
DOI URL |
[29] |
W. Zou, B. Deng, X. Hu, Y. Zhou, Y. Pu, S. Yu, K. Ma, J. Sun, H. Wan, L. Dong, Appl. Catal. B 238 (2018) 111-118.
DOI URL |
[30] |
J. Zhang, Y. Wei, G. Jin, G. Wei, J. Mater. Sci. Technol. 26 (2010) 187-192.
DOI URL |
[31] |
Q. Zhang, M. Mao, Y. Li, Y. Yang, H. Huang, Z. Jiang, Q. Hu, S. Wu, X. Zhao, Appl. Catal. B 239 (2018) 555-564.
DOI URL |
[32] |
N. Kanjana, W. Maiaugree, P. Poolcharuansin, P. Laokul, J. Mater. Sci. Technol. 48 (2020) 105-113.
DOI URL |
[33] |
J. Cai, X. Wu, S. Li, F. Zheng, Appl. Catal. B 201 (2017) 12-21.
DOI URL |
[34] |
C.G. Zhou, S.M. Wang, Z.Y. Zhao, Z. Shi, S.C. Yan, Z.G. Zou, Adv. Funct. Mater. 28 (2018), 1801214.
DOI URL |
[35] |
S. Li, J. Chen, S. Hu, H. Wang, W. Jiang, X. Chen, Chem. Eng. J. 402 (2020), 126165.
DOI URL |
[36] |
W. Zhao, Y. Li, P. Zhao, L. Zhang, B. Dai, J. Xu, H. Huang, Y. Hee, D.Y.C. Leung, Chem. Eng. J. 405 (2021), 126555.
DOI URL |
[37] |
X.F. Yang, Z.P. Chen, J.S. Xu, H. Tang, K.M. Chen, Y. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 15285-15293.
DOI URL |
[38] |
M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mater. Sci. Technol. 34 (2018) 1511-1525.
DOI |
[39] |
M. Kim, W. Jo, J. Mater. Sci. Technol. 40 (2020) 168-175.
DOI URL |
[40] |
J. Jia, W. Sun, Q. Zhang, X. Zhang, X. Hu, E. Liu, J. Fan, Appl. Catal. B 261 (2020), 118249.
DOI URL |
[41] |
Z. Zhang, Z. Pan, Y. Guo, P. Wong, R. Bai, Appl. Catal. B 261 (2020), 118212.
DOI URL |
[42] |
W. Zhao, Y. Feng, H. Huang, P. Zhou, J. Li, L. Zhang, B. Dai, J. Xu, F. Zhu, N. Sheng, Appl. Catal. B 245 (2019) 448-458.
DOI URL |
[43] |
J. Xu, Z. Wang, Y. Zhu, J. Mater. Sci. Technol. 49 (2020) 133-143.
DOI URL |
[44] |
H. Xu, L. Wu, L. Jin, K. Wu, J. Mater. Sci. Technol. 33 (2017) 30-38.
DOI URL |
[45] |
M. Mousavi, A. Habibi-Yangjeh, D. Seifzadeh, J. Mater. Sci. Technol. 34 (2018) 1638-1651.
DOI |
[46] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
[47] |
J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang, J. Xu, S. Komarneni, Appl. Catal. B 206 (2017) 406-416.
DOI URL |
[48] |
H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Ind. Eng. Chem. Res. 53 (2014) 8018-8025.
DOI URL |
[49] |
C.L. Wu, Matter. Lett. 139 (2015) 382-384.
DOI URL |
[50] |
M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, A. Dinia, J. Mater. Chem. C 3 (2015) 7014-7021.
DOI URL |
[51] |
X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, G. Zou, Appl. Phys. A 94 (2009) 387-392.
DOI URL |
[52] |
K. Wang, G.K. Zhang, J. Li, Y. Li, X.Y. Wu, ACS Appl. Mater. Interfaces 9 (2017) 43704-43715.
DOI URL |
[53] |
D.L. Jiang, J. Li, C.S. Xing, Z.Y. Zhang, S. Meng, M. Chen, ACS Appl. Mater. Interfaces 7 (2015) 19234.
DOI URL |
[54] |
B. Wang, J. Zhang, F. Huang, Appl. Surf. Sci. 391 (2017) 449-456.
DOI URL |
[55] |
J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Carbon 80 (2014) 213-221.
DOI URL |
[56] |
D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S. Phanichphant, Sci. Rep. 4 (2014) 05757.
DOI URL |
[57] |
H.I. Chen, H.Y. Chang, Solid State Commun. 133 (2005) 593-598.
DOI URL |
[58] |
K. Saravanakumar, M. Mymoon Ramjan, P. Suresh, V. Muthuraj, J. Alloy. Compd. 664 (2016) 149-160.
DOI URL |
[59] |
T. Hasegawa, S.M.F. Shahed, Y. Sainoo, A. Beniya, N. Isomura, Y. Watanabe, T. Komeda, J. Chem. Phys. 140 (2014), 044711.
DOI URL |
[60] |
M. Humayun, Z. Hu, A. Khan, W. Cheng, Y. Yuan, Z. Zheng, Q. Fu, W. Luo, J. Hazard. Mater. 364 (2019) 635-644.
DOI URL |
[61] |
M. Liang, T. Borjigin, Y. Zhang, B. Liu, H. Liu, H. Guo, Appl. Catal. B 243 (2019) 566-575.
DOI URL |
[62] |
R. Ma, S. Zhang, L. Li, P. Gu, T. Wen, A. Khan, S. Li, B. Li, S. Wang, X. Wang, ACS Sustain. Chem. Eng. 7 (2019) 9699-9708.
DOI URL |
[63] |
D.D. Koelling, A.M. Boring, J.H. Wood, Solid State Commun. 47 (1983) 227-232.
DOI URL |
[64] |
L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Catal. Sci. Technol. 4 (2014) 758-765.
DOI URL |
[1] | Zheng Huang, Zhuxian Yang, Mian Zahid Hussain, Quanli Jia, Yanqiu Zhu, Yongde Xia. Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 84(0): 76-85. |
[2] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
[3] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
[4] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[5] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
[6] | Chongyang Yuan, Wei Chen, Zunxian Yang, Zhenguo Huang, Xuebin Yu. The effect of various cations/anions for MgH2 hydrolysis reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 186-192. |
[7] | Shuangshuang Shao, Kun Liang, Xinxing Li, Jinfeng Zhang, Chuan Liu, Zheng Cui, Jianwen Zhao. Large-area (64 × 64 array) inkjet-printed high-performance metal oxide bilayer heterojunction thin film transistors and n-metal-oxide-semiconductor (NMOS) inverters [J]. J. Mater. Sci. Technol., 2021, 81(0): 26-35. |
[8] | Can Li, Fan Feng, Jie Jian, Youxun Xu, Fan Li, Hongqiang Wang, Lichao Jia. Boosting carrier dynamics of BiVO4 photoanode via heterostructuring with ultrathin BiOI nanosheets for enhanced solar water splitting [J]. J. Mater. Sci. Technol., 2021, 79(0): 21-28. |
[9] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[10] | Zhongfu Li, Zhaohui Wu, Rongan He, Long Wan, Shiying Zhang. In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 56(0): 151-161. |
[11] | Angga Hermawan, Yusuke Asakura, Miki Inada, Shu Yin. A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature [J]. J. Mater. Sci. Technol., 2020, 51(0): 119-129. |
[12] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[13] | Dapeng Cao, Jingbo Zhang, Anchen Wang, Xiaohui Yu, Baoxiu Mi. Fabrication of Cr-doped SrTiO3/Ti-doped α-Fe2O3 photoanodes with enhanced photoelectrochemical properties [J]. J. Mater. Sci. Technol., 2020, 56(0): 189-195. |
[14] | Xintong Liu, Shaonan Gu, Yanjun Zhao, Guowei Zhou, Wenjun Li. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review [J]. J. Mater. Sci. Technol., 2020, 56(0): 45-68. |
[15] | Zizhan Liang, Rongchen Shen, Hau Ng Yun, Peng Zhang, Quanjun Xiang, Xin Li. A review on 2D MoS2 cocatalysts in photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 89-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||