J. Mater. Sci. Technol. ›› 2021, Vol. 66: 46-56.DOI: 10.1016/j.jmst.2020.04.071
• Research Article • Previous Articles Next Articles
Xin Weia, Junhua Donga,*(), Nan Chenb, Amar Prasad Yadavb,c, Qiying Renb, Jie Weia, Changgang Wanga, Rongyao Maa, Wei Keb
Received:
2020-02-05
Revised:
2020-03-16
Accepted:
2020-04-07
Published:
2021-03-10
Online:
2021-04-01
Contact:
Junhua Dong
About author:
*E-mail address: jhdong@imr.ac.cn (J. Dong).Xin Wei, Junhua Dong, Nan Chen, Amar Prasad Yadav, Qiying Ren, Jie Wei, Changgang Wang, Rongyao Ma, Wei Ke. Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment[J]. J. Mater. Sci. Technol., 2021, 66: 46-56.
Bentonite content | Conductivity (S m-1) | Chemical compositions (mmol L-1) | ||
---|---|---|---|---|
HCO3- | Cl- | SO42- | ||
0% | 0.328 | 5 | 1 | 1 |
2% | 0.379 | 5.78 | 1.05 | 1.05 |
9.1 % | 0.540 | 8.9 | 1.24 | 1.23 |
33.3 % | 0.915 | 24.5 | 2.2 | 2.15 |
Table 1 Conductivity and chemical composition of different environments.
Bentonite content | Conductivity (S m-1) | Chemical compositions (mmol L-1) | ||
---|---|---|---|---|
HCO3- | Cl- | SO42- | ||
0% | 0.328 | 5 | 1 | 1 |
2% | 0.379 | 5.78 | 1.05 | 1.05 |
9.1 % | 0.540 | 8.9 | 1.24 | 1.23 |
33.3 % | 0.915 | 24.5 | 2.2 | 2.15 |
Bentonite content (wt.%) | 0% | 2% | 9.1 % | 33.3 % |
---|---|---|---|---|
βa (V/dec) | 0.097 | 0.078 | 0.049 | 0.050 |
βc (V/dec) | 0.350 | 0.210 | 0.196 | 0.148 |
Table 2 Tafel slopes of the polarization curves in different environments.
Bentonite content (wt.%) | 0% | 2% | 9.1 % | 33.3 % |
---|---|---|---|---|
βa (V/dec) | 0.097 | 0.078 | 0.049 | 0.050 |
βc (V/dec) | 0.350 | 0.210 | 0.196 | 0.148 |
Fig. 7. XRD pattern of the corrosion products formed in different simulated environments after immersion for 30 days and 107 days: (a) blank solution, (b) 2% bentonite solution, (c) 9.1 % bentonite slurry, (d) 33.3 % bentonite mud.
Fig. 9. Equivalent circuits for the EIS of low carbon steel in the blank solution (Re - solution resistance, Qdl - constant phase element (CPE) of electric double layer, Rct - charge transfer resistance of low carbon steel, W - Warburg impedance of oxygen diffusion, Qr - CPE of rust reduction, Rr - Faraday resistance of rust reduction).
Time (day) | Re (Ω cm2) | Y0-r (mS sn cm-2) | nr | Rr (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|
initial | 470 | - | - | - | 0.81 | 0.75 | 891 | 32 |
4 | 408 | 0.7 | 0.73 | 173.8 | 1.7 | 0.51 | 1687 | - |
16 | 295 | 1.5 | 0.75 | 228 | 2.3 | 0.56 | 1298 | - |
30 | 247 | 1.9 | 0.71 | 105.8 | 2.0 | 0.39 | 1553 | - |
58 | 188 | 3.2 | 0.72 | 47.4 | 1.1 | 0.3 | 1489 | - |
86 | 167 | 2.7 | 0.63 | 201.5 | 1.4 | 0.84 | 1101 | - |
107 | 163 | 1.0 | 0.67 | 37.6 | 2.9 | 0.74 | 1251 | - |
Table 3 Fitting results of EIS in the blank solution.
Time (day) | Re (Ω cm2) | Y0-r (mS sn cm-2) | nr | Rr (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|
initial | 470 | - | - | - | 0.81 | 0.75 | 891 | 32 |
4 | 408 | 0.7 | 0.73 | 173.8 | 1.7 | 0.51 | 1687 | - |
16 | 295 | 1.5 | 0.75 | 228 | 2.3 | 0.56 | 1298 | - |
30 | 247 | 1.9 | 0.71 | 105.8 | 2.0 | 0.39 | 1553 | - |
58 | 188 | 3.2 | 0.72 | 47.4 | 1.1 | 0.3 | 1489 | - |
86 | 167 | 2.7 | 0.63 | 201.5 | 1.4 | 0.84 | 1101 | - |
107 | 163 | 1.0 | 0.67 | 37.6 | 2.9 | 0.74 | 1251 | - |
Fig. 11. Equivalent circuits for the EIS of low carbon steel in bentonite environments (Qm - CPE of attached bentonite layer, Rm - resistance of attached bentonite layer).
Time (day) | Re (Ω cm2) | Y0-m (mS sn cm-2) | nm | Rm (Ω cm2) | Y0-r (mS sn cm-2) | nr | Rr (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
initial | 402.7 | 0.41 | 0.85 | 29.3 | - | - | - | 0.56 | 0.73 | 822 | 20.7 |
4 | 384.4 | 0.94 | 0.85 | 28.5 | - | - | - | 0.34 | 0.79 | 4711 | 18.3 |
16 | 279.4 | 0.1 | 0.42 | 15.3 | - | - | - | 0.28 | 0.85 | 7965 | 14.4 |
30 | 230.2 | 6.4 | 0.78 | 23.6 | 3.5 | 0.42 | 4.2 | 2.3 | 0.91 | 2549 | - |
58 | 166.8 | - | - | - | 4.8 | 0.63 | 114.6 | 1.7 | 0.86 | 1093 | - |
86 | 150.2 | - | - | - | 4.1 | 0.64 | 151.1 | 2.9 | 0.84 | 1102 | - |
107 | 136.7 | - | - | - | 4.1 | 0.62 | 237.9 | 3.1 | 0.89 | 1122 | - |
Table 4 Fitting results of EIS in 2% bentonite solution.
Time (day) | Re (Ω cm2) | Y0-m (mS sn cm-2) | nm | Rm (Ω cm2) | Y0-r (mS sn cm-2) | nr | Rr (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
initial | 402.7 | 0.41 | 0.85 | 29.3 | - | - | - | 0.56 | 0.73 | 822 | 20.7 |
4 | 384.4 | 0.94 | 0.85 | 28.5 | - | - | - | 0.34 | 0.79 | 4711 | 18.3 |
16 | 279.4 | 0.1 | 0.42 | 15.3 | - | - | - | 0.28 | 0.85 | 7965 | 14.4 |
30 | 230.2 | 6.4 | 0.78 | 23.6 | 3.5 | 0.42 | 4.2 | 2.3 | 0.91 | 2549 | - |
58 | 166.8 | - | - | - | 4.8 | 0.63 | 114.6 | 1.7 | 0.86 | 1093 | - |
86 | 150.2 | - | - | - | 4.1 | 0.64 | 151.1 | 2.9 | 0.84 | 1102 | - |
107 | 136.7 | - | - | - | 4.1 | 0.62 | 237.9 | 3.1 | 0.89 | 1122 | - |
Time (day) | Re (Ω cm2) | Y0-m (mS sn cm-2) | nm | Rm (Ω cm2) | Y0-r (mS sn cm-2) | nr | Rr (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
initial | 270.5 | 0.16 | 0.41 | 53.4 | - | - | - | 0.27 | 0.7 | 2182 | 19.5 |
4 | 235.5 | 0.17 | 0.42 | 52.5 | - | - | - | 0.45 | 0.82 | 10250 | 10.1 |
16 | 193.4 | 0.9 | 0.27 | 25.7 | - | - | - | 0.48 | 0.86 | 5730 | 13.4 |
30 | 149.4 | 0.22 | 0.41 | 16.7 | - | - | - | 0.81 | 0.81 | 5470 | 14.1 |
58 | 113.4 | 0.5 | 0.5 | 8.7 | 4.4 | 0.78 | 135.3 | 3.0 | 0.78 | 3276 | - |
86 | 91.4 | 4.7 | 0.23 | 19.9 | 7.3 | 0.72 | 142 | 3.7 | 0.81 | 3384 | - |
107 | 103.5 | 5.5 | 0.44 | 14.2 | 10.0 | 0.7 | 140.6 | 4.1 | 0.83 | 3320 | - |
Table 5 Fitting results of EIS in 9.1 % bentonite slurry.
Time (day) | Re (Ω cm2) | Y0-m (mS sn cm-2) | nm | Rm (Ω cm2) | Y0-r (mS sn cm-2) | nr | Rr (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
initial | 270.5 | 0.16 | 0.41 | 53.4 | - | - | - | 0.27 | 0.7 | 2182 | 19.5 |
4 | 235.5 | 0.17 | 0.42 | 52.5 | - | - | - | 0.45 | 0.82 | 10250 | 10.1 |
16 | 193.4 | 0.9 | 0.27 | 25.7 | - | - | - | 0.48 | 0.86 | 5730 | 13.4 |
30 | 149.4 | 0.22 | 0.41 | 16.7 | - | - | - | 0.81 | 0.81 | 5470 | 14.1 |
58 | 113.4 | 0.5 | 0.5 | 8.7 | 4.4 | 0.78 | 135.3 | 3.0 | 0.78 | 3276 | - |
86 | 91.4 | 4.7 | 0.23 | 19.9 | 7.3 | 0.72 | 142 | 3.7 | 0.81 | 3384 | - |
107 | 103.5 | 5.5 | 0.44 | 14.2 | 10.0 | 0.7 | 140.6 | 4.1 | 0.83 | 3320 | - |
Time (day) | Re (Ω cm2) | Y0-m (mS sn cm-2) | nm | Rm (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|
initial | 153.3 | 1.59 | 0.23 | 74.8 | 0.28 | 0.75 | 2414 | 11.6 |
4 | 147.4 | 2.55 | 0.37 | 39 | 0.36 | 0.81 | 17610 | 1.7 |
16 | 117.0 | 0.89 | 0.65 | 28.8 | 0.38 | 0.86 | 21670 | 1.2 |
30 | 83.1 | 11.1 | 0.23 | 52.9 | 0.50 | 0.85 | 16100 | 3.9 |
58 | 70.7 | 20.0 | 0.35 | 33.6 | 0.68 | 0.86 | 9752 | 6.6 |
86 | 53.1 | 16.8 | 1 | 27.7 | 0.79 | 0.86 | 10860 | 6.3 |
107 | 57.1 | 11.8 | 0.99 | 28.1 | 0.98 | 0.88 | 6891 | 6.8 |
Table 6 Fitting results of EIS in 33.3 % bentonite mud.
Time (day) | Re (Ω cm2) | Y0-m (mS sn cm-2) | nm | Rm (Ω cm2) | Y0-dl (mS sn cm-2) | ndl | Rct (Ω cm2) | Y0-W (mS s0.5 cm-2) |
---|---|---|---|---|---|---|---|---|
initial | 153.3 | 1.59 | 0.23 | 74.8 | 0.28 | 0.75 | 2414 | 11.6 |
4 | 147.4 | 2.55 | 0.37 | 39 | 0.36 | 0.81 | 17610 | 1.7 |
16 | 117.0 | 0.89 | 0.65 | 28.8 | 0.38 | 0.86 | 21670 | 1.2 |
30 | 83.1 | 11.1 | 0.23 | 52.9 | 0.50 | 0.85 | 16100 | 3.9 |
58 | 70.7 | 20.0 | 0.35 | 33.6 | 0.68 | 0.86 | 9752 | 6.6 |
86 | 53.1 | 16.8 | 1 | 27.7 | 0.79 | 0.86 | 10860 | 6.3 |
107 | 57.1 | 11.8 | 0.99 | 28.1 | 0.98 | 0.88 | 6891 | 6.8 |
[1] | J. Wang, L. Chen, R. Su, X.G. Zhao, J. Rock Mech. Geotech. Eng. 10 (2018) 411-435. |
[2] |
R.C. Ewing, Nat. Mater. 14 (2015) 252-257.
DOI URL PMID |
[3] | X. Wei, Y.M. Liu, J.H. Dong, S.F. Cao, J.L. Xie, N. Chen, F. Xue, C.G. Wang, W. Ke, Appl. Clay Sci. 167 (2019) 23-32. |
[4] |
N. Rigonat, O. Isnard, S.L. Harley, I.B. Butler, J. Hazard. Mater. 341 (2018) 28-35.
URL PMID |
[5] | D.G. Bennett, R. Gens, J. Nucl. Mater. 379 (2008) 1-8. |
[6] | F. Xue, X. Wei, J.H. Dong, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 35 (2019) 596-603. |
[7] | Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 32 (2016) 341-348. |
[8] | D.W. Shoesmith, Corrosion 62 (2006) 703-722. |
[9] | F. Xue, X. Wei, J.H. Dong, I.N. Etim, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 34 (2018) 1349-1358. |
[10] |
N.R. Smart, B. Reddy, A.P. Rance, D.J. Nixon, N. Diomidis, Corros. Eng. Sci. Technol. 52 (2017) 113-126.
DOI URL |
[11] | F. King, Corrosion 69 (2013) 986-1011. |
[12] | H.L. Wen, J.H. Dong, W. Ke, W.J. Chen, J.F. Yang, N. Chen, Acta Metall. Sin. 50 (2014) 275-284 (in Chinese). |
[13] | J.F. Yang, J.H. Dong, W. Ke, Acta Metall. Sin. 47 (2011) 1321-1326 (in Chinese). |
[14] | H.E. Hajj, Corros. Sci. 76 (2013) 432-440. |
[15] |
K. Idemitsu, S.A. Nessa, S. Yamazaki, H. Ikeuchi, Y. Inagaki, T. Arima, Mater. Res. Soc. Symp. Proc. 1107 (2008) 501-508.
DOI URL |
[16] |
S. Kaufhold, A.W. Hassel, D. Sanders, R. Dohrmann, J. Hazard. Mater. 285 (2015) 464-473.
URL PMID |
[17] |
C.S. Liu, J.Q. Wang, Z.M. Zhang, E.H. Han, W. Liu, D. Liang, Z.T. Yang, X.Z. Cao, J. Mater. Sci. Technol. 34 (2018) 2131-2139.
DOI URL |
[18] | N. Taniguchi, A. Honda, H. Ishikawa, Mater. Res. Soc. Symp. Proc. 506 (1998) 495-501. |
[19] | M.L. Schlegel, S. Necib, S. Daumas, M. Labat, C. Blanc, E. Foy, Corros. Sci. 136 (2018) 70-90. |
[20] | H.Y. Zhang, X.W. Wang, P. Liu, M. Yan, Y. Peng, Chin. J. Rock. Mech. Eng. S2 (2016) 166-175. |
[21] | Y.J. Wang, L. Wei, J.J. Li, Z.X. Shi, Multipurp. Util. Miner. Resour. 5 (2015) 50-53 (in Chinese). |
[22] | X.R. Hu, G.L. Lu, J.M. Gu, L.S. Chen, Acta Phys. Chim. Sin. 19 (2003) 1171-1175 (in Chinese). |
[23] | X.Q. Cao, Y.N. Chen, Y. Zhang, J. Qiu, L. Li, X.J. Lv, X.F. Zhao, J. Funct. Mater. 47 (2016) 152-156. |
[24] | D.A. Sun, W.J. Sun, L. Fang, J. Rock Mech. Geotech. Eng. 6 (2014) 113-118. |
[25] |
A. Cadene, S. Durand-Vidal, P. Turq, J. Brendle, J. Colloid Interface Sci. 285 (2005) 719-730.
URL PMID |
[26] | Z.R. Gao, T. Chen, Y.F. Xu, Rock Soil Mech. 39 (2018) 249-253 (in Chinese). |
[27] | W.M. Ye, Z.J. Zheng, B. Chen, Y.G. Chen, Y.J. Cui, J. Wang, Appl. Clay Sci. 101 (2014) 192-198. |
[28] | G. Ritvo, O. Dassa, M. Kochba, Aquaculture 218 (2003) 379-386. |
[29] | H.B. Min, S.Y. Lee, J. Ind. Eng. Chem. 16 (2010) 837-841. |
[30] | N. Mayordomo, C. Degueldre, U. Alonso, T. Missana, Clay Miner. 51 (2016) 213-222. |
[31] | Y.G. Chen, Y. He, W.M. Ye, W.H. Sui, M.M. Xiao, Trans. Nonferrous Met. Soc. China 23 (2013) 3482-3489. |
[32] | G. Montes-H, N. Marty, B. Fritz, A. Clement, N. Michau, Appl. Clay Sci. 30 (2005) 181-198. |
[33] | A.E. Milodowski, M.R. Cave, S.J. Kemp, H. Taylor, K. Green, C.L. Williams, R.A. Shaw, C.J.B. Gowing, N.D. Eatherington, Br. Geol. Surv. 94 (2009) 56-64. |
[34] | O. Bildstein, L. Trotignon, M. Perronnet, M. Jullien, Phys. Chem. Earth 31 (2006) 618-625. |
[35] | L. Carlson, O. Karnland, V.M. Oversby, A.P. Rance, N.R. Smart, M. Snellman, M. Vähänen, L.O. Werme, Phys. Chem. Earth 32 (2007) 334-345. |
[36] | P. Wersin, M. Snellman, Report on the Status of Research and Development, Posiva Working Report, 2008. |
[37] | K. Idemitsu, S. Yano, X.B. Xia, Y. Inagaki, T. Arima, T. Mitsugashira, M. Hara, Y. Suzuki, Mater. Res. Soc. Symp. Proc. 713 (2002) 113-120. |
[38] | J. Wilson, G. Cressey, B. Cressey, J. Cuadros, K.V. Ragnarsdottir, D. Savage, M. Shibata, Geochim. Cosmochim. Acta 70 (2006) 323-336. |
[39] | L. Chen, Y.M. Liu, J. Wang, S.F. Cao, J.L. Xie, L.K. Ma, X.G. Zhao, Y.W. Li, J. Liu, Eng. Geol. 172 (2014) 57-68. |
[40] | M. Stratmann, J. Muller, Corros. Sci. 36 (1994) 327-359. |
[41] | M. Jeannin, D. Calonnec, R. Sabot, P. Refait, Electrochim. Acta 56 (2011) 1466-1475. |
[42] | M. Jeannin, D. Calonnec, R. Sabot, P. Refait, Corros. Sci. 52 (2010) 2026-2034. |
[43] | J. Samper, L. Zheng, L. Montenegro, A.M. Fernández, P. Rivas, Appl. Geochem. 23 (2008) 1186-1201. |
[44] | F. King, Ontario Power Generation Nuclear Waste Management Division Report 06819-REP-01300-10102-R00, Toronto, Ontario, 2006. |
[45] | T. Ishikawa, Y. Kondo, A. Yasukawa, K. Kandori, Corros. Sci. 40 (1998) 1239-1251. |
[46] | Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 31 (2015) 1047-1058. |
[47] | F. Mansfeld, J. Electrochem. Soc. 135 (1988) 906-907. |
[48] | L. Hao, S.X. Zhang, J.H. Dong, W. Ke, Corros. Sci. 54 (2012) 244-250. |
[49] | C.N. Cao, J.Q. Zhang, An Introduction of Electrochemical Impedance Spectroscopy Science, Science Press, Beijing, 2002. |
[50] | N.C.M. Marty, F. Claret, A. Lassin, J. Tremosa, P. Blanc, B. Madé, E. Giffaut, B. Cochepin, C. Tournassat, Appl. Geochem. 55 (2015) 108-118. |
[51] | C.N. Cao, Corrosion Electrochemistry Principle, Chemical Industry Press, Beijing, 2004. |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Lin Pang, Zhengbin Wang, Yugui Zheng, Xueming Lai, Xu Han. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54(0): 95-104. |
[3] | Fang Xue, Xin Wei, Junhua Dong, Changgang Wang, Wei Ke. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35(4): 596-603. |
[4] | Fang Xue, Xin Wei, Junhua Dong, Ini-Ibehe Nabuk Etim, Changgang Wang, Wei Ke. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34(8): 1349-1358. |
[5] | Haigang Xiao, Wei Ye, Xiaoping Song, Yuantai Ma, Ying Li. Formation process of akaganeite in the simulated wet-dry cycles atmospheric environment [J]. J. Mater. Sci. Technol., 2018, 34(8): 1387-1396. |
[6] | Jianxun Zhao, Xiaojie Zhai, Xing Tao, Zhe Li, Qingshuang Wang, Wanqiang Liu, Limin Wang. Improved electrochemical hydrogen storage capacity of Ti45Zr38Ni17 quasicrystal by addition of ZrH2 [J]. J. Mater. Sci. Technol., 2018, 34(6): 995-998. |
[7] | Canshuai Liu, Jianqiu Wang, Zhiming Zhang, En-Hou Han, Wei Liu, Dong Liang, Zhongtian Yang, Xingzhong Cao. Effect of cumulative gamma irradiation on microstructure and corrosion behaviour of X65 low carbon steel [J]. J. Mater. Sci. Technol., 2018, 34(11): 2131-2139. |
[8] | M. Jafarzadegan, A. Abdollah-zadeh, A.H. Feng, T. Saeid, J. Shen, H. Assadi. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel [J]. J. Mater. Sci. Technol., 2013, 29(4): 367-372. |
[9] | Luhan Hao, Mingyue Sun, Namin Xiao, Dianzhong Li. Characterizations of Dynamic Strain-induced Transformation in Low Carbon Steel [J]. J. Mater. Sci. Technol., 2012, 28(12): 1095-1101. |
[10] | Kai Zhu, Zhenguo Yang. Effect of Mg Addition on the Ferrite Grain Boundaries Misorientation in HAZ of Low Carbon Steels [J]. J Mater Sci Technol, 2011, 27(3): 252-256. |
[11] | Luhan Hao Namin Xiao Chengwu Zheng Dianzhong Li. Mechanical Properties and Temper Resistance of Deformation Induced Ferrite in a Low Carbon Steel [J]. J Mater Sci Technol, 2010, 26(12): 1107-1113. |
[12] | M. Siddique,N. Hussain,M. Shafi. Identification of Iron Oxides Qualitatively/Quantitatively Formed during the High Temperature Oxidation of Superalloys in Air and Steam Environments [J]. J Mater Sci Technol, 2009, 25(04): 479-482. |
[13] | Na LI, Zhenyu LIU, Yiqing QIU, Zhaosen LIN, Xianghua LIU, Guodong WANG. Solidification Structure of Low Carbon Steel Strips with Different Phosphorus Contents Produced by Strip Casting [J]. J. Mater. Sci. Technol., 2006, 22(06): 755-758. |
[14] | Nizamettin Kahraman, Behcet Gülenc. Metallurgical and Corrosion Properties of Explosively Welded Ti6Al4V/Low Carbon Steel Clad [J]. J Mater Sci Technol, 2005, 21(05): 743-748. |
[15] | Xingping YONG, Gang LIU, Ke LU, Jian LV. Characterization and Properties of Nanostructured Surface Layer in a Low Carbon Steel Subjected to Surface Mechanical Attrition [J]. J Mater Sci Technol, 2003, 19(01): 1-4. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||