J. Mater. Sci. Technol. ›› 2020, Vol. 59: 92-99.DOI: 10.1016/j.jmst.2020.04.055
• Research Article • Previous Articles Next Articles
Shan Jianga, Hao Shaoa, Genyang Caob, Han Lia, Weilin Xua, Jingliang Lia, Jian Fanga,c,*(), Xungai Wanga,*(
)
Received:
2020-03-19
Revised:
2020-04-27
Accepted:
2020-04-27
Published:
2020-12-15
Online:
2020-12-18
Contact:
Jian Fang,Xungai Wang
Shan Jiang, Hao Shao, Genyang Cao, Han Li, Weilin Xu, Jingliang Li, Jian Fang, Xungai Wang. Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution[J]. J. Mater. Sci. Technol., 2020, 59: 92-99.
Samples | S@CC | Fe3O4/Ni@CC | Fe3O4/S@CC | NiS@CC | Fe3O4/NiS@CC |
---|---|---|---|---|---|
C 1 s | 94.75 | 91.11 | 88.22 | 92.65 | 87.23 |
S 2p | 1.64 | 0.13 | 2.58 | 1.98 | 2.09 |
N 1 s | 0.58 | 0.48 | 0.79 | 0.55 | 0.84 |
O 1 s | 2.7 | 6.03 | 6.71 | 2.95 | 7.28 |
Fe 2p | 0.17 | 1.26 | 1.43 | 0.13 | 1.18 |
Ni 2p | 0.16 | 0.99 | 0.27 | 1.74 | 1.38 |
Table 1 XPS atomic percentages of different catalysts.
Samples | S@CC | Fe3O4/Ni@CC | Fe3O4/S@CC | NiS@CC | Fe3O4/NiS@CC |
---|---|---|---|---|---|
C 1 s | 94.75 | 91.11 | 88.22 | 92.65 | 87.23 |
S 2p | 1.64 | 0.13 | 2.58 | 1.98 | 2.09 |
N 1 s | 0.58 | 0.48 | 0.79 | 0.55 | 0.84 |
O 1 s | 2.7 | 6.03 | 6.71 | 2.95 | 7.28 |
Fe 2p | 0.17 | 1.26 | 1.43 | 0.13 | 1.18 |
Ni 2p | 0.16 | 0.99 | 0.27 | 1.74 | 1.38 |
Fig. 4. (a) Nitrogen adsorption and desorption isotherm, (b) pore size distribution, (c) BET specific surface area and (d) Raman spectra of different catalysts.
Fig. 5. (a) OER polarization curves of different catalysts in 1 M KOH, (b) Tafel slopes derived from the polarization curves in (a), (c) OER polarization curves of Fe3O4/NiS@CC catalyst in 0.1 and 1 M KOH, (d) Tafel slopes derived from the polarization curves in (c), (e) EIS Nyquist plots of different samples at in 1 M KOH.
Fig. 6. (a) Current-time curve of Fe3O4/NiS@CC catalyst at 1.58 V, (b) OER polarization curves for Fe3O4/NiS@CC catalyst before and after i-t measurements without iR compensation.
[1] |
Y. Gu, S. Chen, J. Ren, Y.A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano 12 (2018) 245-253.
DOI URL PMID |
[2] |
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Adv. Mater. 28 (2016) 215-230.
DOI URL PMID |
[3] |
Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 3 (2012) 399-404.
DOI URL PMID |
[4] |
M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.J. Zou, Z.L. Wang, Nano Energy 37 (2017) 136-157.
DOI URL |
[5] |
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Chem. Soc. Rev. 46 (2017) 337-365.
DOI URL PMID |
[6] | S. Jiang, J. Li, J. Fang, X. Wang Small (2019), 1903760. |
[7] | Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin, H. Sun, Y. Zhong, Y. Chen, F. Zhang, H.-J. Lin, C.-T. Chen, W. Zhou, X. Zhang, S.C. Smith, Z. Shao, H. Wang, EcoMat (2020), n/a. |
[8] |
Y. Zhu, H.A. Tahini, Z. Hu, Z.-G. Chen, W. Zhou, A.C. Komarek, Q. Lin, H.-J. Lin, C.-T. Chen, Y. Zhong, M.T. Fernández-Díaz, S.C. Smith, H. Wang, M. Liu, Z. Shao Adv. Mater. 32 (2020), 2070001.
DOI URL |
[9] |
J. Dai, Y. Zhu, Y. Yin, H.A. Tahini, D. Guan, F. Dong, Q. Lu, S.C. Smith, X. Zhang, H. Wang, W. Zhou, Z. Shao, Small 15 (2019), 1903120.
DOI URL |
[10] |
W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Chem. Commun. 52 (2016) 1486-1489.
DOI URL |
[11] |
J.S. Chen, J. Ren, M. Shalom, T. Fellinger, M. Antonietti, ACS Appl. Mater. Interfaces 8 (2016) 5509-5516.
DOI URL PMID |
[12] |
W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 6 (2013) 2921-2924.
DOI URL |
[13] |
K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B.-W. Mao, X. Zhang, J. Fransaer, Adv. Funct. Mater. 29 (2019), 1900315.
DOI URL |
[14] |
G.-F. Chen, T.Y. Ma, Z.-Q. Liu, N. Li, Y.-Z. Su, K. Davey, S.-Z. Qiao, Adv. Funct. Mater. 26 (2016) 3314-3323.
DOI URL |
[15] |
W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 6 (2013) 2921-2924.
DOI URL |
[16] |
Y. Liu, X. Xie, G. Zhu, Y. Mao, Y. Yu, S. Ju, X. Shen, H. Pang, J. Mater. Chem. A 7 (2019) 15851-15861.
DOI URL |
[17] |
X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, S. Yang, J. Am. Chem. Soc. 137 (2015) 11900-11903.
URL PMID |
[18] |
C. Xuan, W. Lei, J. Wang, T. Zhao, C. Lai, Y. Zhu, Y. Sun, D. Wang, J. Mater. Chem. A 7 (2019) 12350-12357.
DOI URL |
[19] |
A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 26 (2016) 4661-4672.
DOI URL |
[20] |
Z. Cui, Y. Ge, H. Chu, R. Baines, P. Dong, J. Tang, Y. Yang, P.M. Ajayan, M. Ye, J. Shen, J. Mater. Chem. A 5 (2017) 1595-1602.
DOI URL |
[21] |
C. Du, Y. Men, X. Hei, J. Yu, G. Cheng, W. Luo, ChemElectroChem 5 (2018) 2564-2570.
DOI URL |
[22] |
Q. Liu, L. Xie, Z. Liu, G. Du, A.M. Asiri, X. Sun, Chem. Commun. 53 (2017) 12446-12449.
DOI URL |
[23] |
N. Cheng, Q. Liu, A.M. Asiri, W. Xing, X. Sun, J. Mater. Chem. A 3 (2015) 23207-23212.
DOI URL |
[24] |
P. Ganesan, A. Sivanantham, S. Shanmugam, J. Mater. Chem. A 4 (2016) 16394-16402.
DOI URL |
[25] |
X. Shang, K.-L. Yan, S.-S. Lu, B. Dong, W.-K. Gao, J.-Q. Chi, Z.-Z. Liu, Y.-M. Chai, C.-G. Liu, J. Power Sources 363 (2017) 44-53.
DOI URL |
[26] |
Y.-H. Zhu, S. Yuan, D. Bao, Y.-B. Yin, H.-X. Zhong, X.-B. Zhang, J.-M. Yan, Q. Jiang, Adv. Mater. 29 (2017), 1603719.
DOI URL |
[27] |
A. Dumanlı, A. Windle, J. Mater. Sci. 47 (2012) 4236-4250.
DOI URL |
[28] |
J.W. Yu, Y.-M. Choi, S.M. Kim, J.-K. Lee, N.-H. You, M. Goh, Synth. Met. 206 (2015) 115-119.
DOI URL |
[29] |
P. Kaur, G. Verma, S.S. Sekhon, Prog. Mater. Sci. 102 (2019) 1-71.
DOI URL |
[30] |
S. De, A.M. Balu, J.C. van der Waal, R. Luque, ChemCatChem 7 (2015) 1608-1629.
DOI URL |
[31] |
J. Du, L. Liu, Z. Hu, Y. Yu, Y. Zhang, S. Hou, A. Chen, ACS Sustain. Chem. Eng. 6 (2018) 4008-4015.
DOI URL |
[32] |
S. Wang, Z. Ren, J. Li, Y. Ren, L. Zhao, J. Yu, RSC Adv. 4 (2014) 31300-31307.
DOI URL |
[33] |
L. Chen, T. Ji, L. Mu, J. Zhu, Carbon 111 (2017) 839-848.
DOI URL |
[34] |
C. Zhang, S. Bhoyate, M. Hyatt, B.L. Neria, K. Siam, P.K. Kahol, M. Ghimire, S.R. Mishra, F. Perez, R.K. Gupta, Surf. Coat. Technol. 347 (2018) 407-413.
DOI URL |
[35] | S. Chen, J. Duan, J. Ran, S.-Z. Qiao, Adv.Sci. 2 (2015), 1400015. |
[36] |
J.-C. Li, P.-X. Hou, S.-Y. Zhao, C. Liu, D.-M. Tang, M. Cheng, F. Zhang, H.-M. Cheng, Energy Environ. Sci. 9 (2016) 3079-3084.
DOI URL |
[37] |
X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao, X. Chi, X. Zhao, L. Li, X. Lu, K. Leng, C. Liu, W. Liu, W. Tang, K.P. Loh, Adv. Mater. 31 (2019), 1900341.
DOI URL |
[38] |
R. Wang, J. Cao, S. Cai, X. Yan, J. Li, W.M. Yourey, W. Tong, H. Tang, Acs Appl. Energy Mater. 1 (2018) 1060-1068.
DOI URL |
[39] |
I.S. Amiinu, Z. Pu, D. He, H.G.R. Monestel, S. Mu, Carbon 137 (2018) 274-281.
DOI URL |
[40] |
B. Qi, L.-B. Di, W. Xu, X. Zhang, J. Mater. Chem. A 2 (2014) 11885-11890.
DOI URL |
[41] |
L. Zhang, L. Xu, Y. Zhang, X. Zhou, L. Zhang, A. Yasin, L. Wang, K. Zhi, RSC Adv. 8 (2018) 3869-3877.
DOI URL |
[42] |
S.S.U. Rahman, M.T. Qureshi, K. Sultana, W. Rehman, M.Y. Khan, M.H. Asif, M. Farooq, N. Sultana, Results Phys. 7 (2017) 4451-4456.
DOI URL |
[43] |
B. Dong, X. Zhao, G.-Q. Han, X. Li, X. Shang, Y.-R. Liu, W.-H. Hu, Y.-M. Chai, H. Zhao, C.-G. Liu, J. Mater. Chem. A 4 (2016) 13499-13508.
DOI URL |
[44] |
J. Yang, G. Zhu, Y. Liu, J. Xia, Z. Ji, X. Shen, S. Wu, Adv. Funct. Mater. 26 (2016) 4712-4721.
DOI URL |
[45] |
M. Guo, J. Balamurugan, X. Li, N.H. Kim, J.H. Lee, Small 13 (2017), 1701275.
DOI URL |
[46] |
S. Shaw, S. Alla, S. Meena, R. Mandal, N. Prasad, J. Magn. Magn. Mater. 434 (2017) 181-186.
DOI URL |
[47] |
H. Fang, T. Huang, J. Mao, S. Yao, M.M. Dinesh, Y. Sun, D. Liang, L. Qi, J. Yu, Z. Jiang, ChemistrySelect 3 (2018) 10418-10427.
DOI URL |
[48] |
B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang, C. Cheng, Chem. Eng. J. 308 (2017) 1165-1173.
DOI URL |
[49] |
K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B.W. Mao, X. Zhang, J. Fransaer, Adv. Funct. Mater. 29 (2019), 1900315.
DOI URL |
[50] |
S. Jin, ACS Energy Lett. 2 (2017) 1937-1938.
DOI URL |
[51] |
X.-Y. Yu, Y. Feng, B. Guan, X.W. Lou, U. Paik, Energy Environ. Sci. 9 (2016) 1246-1250.
DOI URL |
[52] |
B. You, N. Jiang, M. Sheng, M.W. Bhushan, Y. Sun, ACS Catal. 6 (2016) 714-721.
DOI URL |
[53] |
K. Kinoshita, J.A.S. Bett, Carbon 13 (1975) 405-409.
DOI URL |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[3] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[4] | Weihua Gu, Xiaoqing Cui, Jing Zheng, Jiwen Yu, Yue Zhao, Guangbin Ji. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation [J]. J. Mater. Sci. Technol., 2021, 67(0): 265-272. |
[5] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[6] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[7] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[8] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
[9] | Su Jian, Fang Changqing, Yang Mannan, Cheng Youliang, Wang Zhen, Huang Zhigang, You Caiyin. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method [J]. J. Mater. Sci. Technol., 2020, 38(0): 183-188. |
[10] | Guangzhi Yang, Shen Song, Jing Li, Zhihong Tang, Jinyu Ye, Junhe Yang. Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves [J]. J. Mater. Sci. Technol., 2019, 35(5): 875-884. |
[11] | Yurong Liu, Yongpeng Xia, Kang An, Chaowei Huanga, Weiwei Cui, Sheng Wei, Rong Ji, Fen Xu, Huanzhi Zhang, Lixian Sun. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior [J]. J. Mater. Sci. Technol., 2019, 35(5): 939-945. |
[12] | Tinghuan Wu, Lixian Sun, Fen Xu, Dan Cai. Nitrogen-doped hierarchical porous carbon materials derived from diethylenetriaminepentaacetic acid (DTPA) for supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(12): 2384-2391. |
[13] | Yuemei Chen, Guoxiong Zhang, Jingyuan Zhang, Haibo Guo, Xin Feng, Yigang Chen, . Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(11): 2189-2196. |
[14] | Camelia Matei Ghimbeu, Aleksandr I. Egunov, Andrey S. Ryzhikov, Valeriy A. Luchnikov. Carbon-Iron Microfibrous Material Produced by Thermal Treatment of Self-rolled Poly(4-vinyl pyridine) Films Loaded by Fe2O3 Particles [J]. J. Mater. Sci. Technol., 2015, 31(9): 881-887. |
[15] | Z.W.Zhao, Z.P.Guo, P.Yao, H.K.Liu. Mesoporous Carbon-Tin Nanocomposites as Anode Materials for Li-ion Battery [J]. J Mater Sci Technol, 2008, 24(04): 657-660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||