J. Mater. Sci. Technol. ›› 2020, Vol. 56: 151-161.DOI: 10.1016/j.jmst.2020.02.061
• Research Article • Previous Articles Next Articles
Zhongfu Lia,b, Zhaohui Wub, Rongan Heb, Long Wana,*(
), Shiying Zhangb,*(
)
Received:2020-02-09
Revised:2020-02-27
Accepted:2020-02-27
Published:2020-11-01
Online:2020-11-20
Contact:
Long Wan,Shiying Zhang
Zhongfu Li, Zhaohui Wu, Rongan He, Long Wan, Shiying Zhang. In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance[J]. J. Mater. Sci. Technol., 2020, 56: 151-161.
Fig. 3. FESEM images of S0 (a) and S10 (c), TEM images of S0 (b) and S10 (d) and the corresponding SEM-EDS mapping images of Bi, Mo, O and In (e), respectively.
| Sample | Pore Volume (cm3/g) | Pore Diameter (nm) | Specific Surface Area (m3/g) |
|---|---|---|---|
| S0 | 0.03 | 0.74 | 14.45 |
| S10 | 0.16 | 1.98 | 33.55 |
| S100 | 0.26 | 3.34 | 43.69 |
Table 1 Specific surface area and pore structure of prepared samples.
| Sample | Pore Volume (cm3/g) | Pore Diameter (nm) | Specific Surface Area (m3/g) |
|---|---|---|---|
| S0 | 0.03 | 0.74 | 14.45 |
| S10 | 0.16 | 1.98 | 33.55 |
| S100 | 0.26 | 3.34 | 43.69 |
Fig. 5. The survey XPS spectra (a), high resolution spectra of Bi 4f (b), Mo 3d (c) and In 3d (d), O 1s (e) and TG results of simulated precursor calcination process (f).
Fig. 6. Photocatalytic reduction of Cr(VI) over S0, S100 and In2O3-x(OH)y/Bi2MoO6 heterojunction (a), kinetic constants of photocatalytic reaction (b), the apparent rate constants (c) and recycling performance for Cr(VI) reduction of S10 (d).
Fig. 7. Visible light driven photodegradation of RhB with the synthesized samples (a), the degradation spectrum of S10 (b), kinetic constants of photocatalytic reaction (c) and (d).
Fig. 8. DRS spectra of prepared samples (a) and the band energy of S0 and S100 (inset), PL spectra of the Bi2MoO6 based samples (b), transient photocurrent responses (i-t) measured at 0 V (c) and Nyquist plots of pure Bi2MoO6 and In2O3-x(OH)y/Bi2MoO6 heterojunctions (d).
| Samples | B1 | τ1 | B2 | τ2 | τ(ave) (ns) |
|---|---|---|---|---|---|
| S0 | 52.25 | 10.74 | 903.52 | 1.01 | 4.09 |
| S10 | 34.25 | 8.10 | 927.50 | 0.73 | 2.35 |
| S100 | 49.36 | 8.50 | 826.65 | 0.92 | 3.02 |
Table 2 The summary of the photoluminescence decay time (τ) and pre-exponential factor obtained from the time-resolved photoluminescence spectroscopy.
| Samples | B1 | τ1 | B2 | τ2 | τ(ave) (ns) |
|---|---|---|---|---|---|
| S0 | 52.25 | 10.74 | 903.52 | 1.01 | 4.09 |
| S10 | 34.25 | 8.10 | 927.50 | 0.73 | 2.35 |
| S100 | 49.36 | 8.50 | 826.65 | 0.92 | 3.02 |
Fig. 12. Mott-Schottky plot for Bi2MoO6 (a), In2O3-x(OH)y electrode (b), the possible S scheme charge transfer mechanism (c) and XPS valence band spectra of In2O3 and In2O3-x(OH)y (d).
| No. | Catalyst | Concentration (mg/mL) | Light | Pollutant | C0 (mg/L) | Efficiency (%) | t (min) | k (min-1) | Refs. |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Pd NSs@Bi2MoO6 | 1 | 300 W Xenon lamp (λ>400 nm) | Cr(VI) | 40 | 80 | 120 | 0.0072 | [ |
| 2 | Ag-TB2-x/C3N4 | 1.4 | 300 W Xenon lamp (λ> 420 nm) | Cr(VI) | 5 | 93 | 210 | 0.0127 | [ |
| 3 | Fe-g-C3N4/MoS2 | 0.6 | 500 W Xenon lamp (λ> 420 nm) | Cr(VI) | 20 | 91 | 150 | 0.0210 | [ |
| 4 | BiOCl/Bi2S3 | 0.5 | 500 W Xenon lamp (λ> 400 nm) | Cr(VI) | 40 | 100 | 180 | 0.0164 | [ |
| 5 | In2O3-x(OH)y/Bi2MoO6 | 0.5 | 36W LED (λ> 420 nm) | Cr(VI) | 40 | 96 | 70 | 0.0338 | This work |
| 6 | BN-Bi2MoO6 | 1 | 300 W halogen tungsten lamp (λ> 420 nm) | RhB | 10 | 99 | 120 | - | [ |
| 7 | Bi2MoO6/FePt | 1 | 300W Xenon lamp (λ> 400 nm) | RhB | 10 | 100 | 70 | 0.0716 | [ |
| 8 | Bi2MoO6/N-rGO | 1 | 500 W tungsten lamp (λ> 420 nm) | RhB | 10 | 100 | 90 | 0.0461 | [ |
| 9 | Ag/Bi2MoO6 | 1 | Xenon lamp (λ> 420 nm) | RhB | 4.79 | 98 | 150 | 0.0234 | [ |
| 10 | In2O3-x(OH)y/Bi2MoO6 | 0.25 | 36W LED (λ> 420 nm) | RhB | 20 | 97.5 | 50 | 0.0745 | This work |
Table 3 Comparison of the photocatalytic performance with various reported photocatalysts.
| No. | Catalyst | Concentration (mg/mL) | Light | Pollutant | C0 (mg/L) | Efficiency (%) | t (min) | k (min-1) | Refs. |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Pd NSs@Bi2MoO6 | 1 | 300 W Xenon lamp (λ>400 nm) | Cr(VI) | 40 | 80 | 120 | 0.0072 | [ |
| 2 | Ag-TB2-x/C3N4 | 1.4 | 300 W Xenon lamp (λ> 420 nm) | Cr(VI) | 5 | 93 | 210 | 0.0127 | [ |
| 3 | Fe-g-C3N4/MoS2 | 0.6 | 500 W Xenon lamp (λ> 420 nm) | Cr(VI) | 20 | 91 | 150 | 0.0210 | [ |
| 4 | BiOCl/Bi2S3 | 0.5 | 500 W Xenon lamp (λ> 400 nm) | Cr(VI) | 40 | 100 | 180 | 0.0164 | [ |
| 5 | In2O3-x(OH)y/Bi2MoO6 | 0.5 | 36W LED (λ> 420 nm) | Cr(VI) | 40 | 96 | 70 | 0.0338 | This work |
| 6 | BN-Bi2MoO6 | 1 | 300 W halogen tungsten lamp (λ> 420 nm) | RhB | 10 | 99 | 120 | - | [ |
| 7 | Bi2MoO6/FePt | 1 | 300W Xenon lamp (λ> 400 nm) | RhB | 10 | 100 | 70 | 0.0716 | [ |
| 8 | Bi2MoO6/N-rGO | 1 | 500 W tungsten lamp (λ> 420 nm) | RhB | 10 | 100 | 90 | 0.0461 | [ |
| 9 | Ag/Bi2MoO6 | 1 | Xenon lamp (λ> 420 nm) | RhB | 4.79 | 98 | 150 | 0.0234 | [ |
| 10 | In2O3-x(OH)y/Bi2MoO6 | 0.25 | 36W LED (λ> 420 nm) | RhB | 20 | 97.5 | 50 | 0.0745 | This work |
| [1] | J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al Ghamdi, Adv. Mater. 29(2017), 1601694. |
| [2] | J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391(2017) 72-123. |
| [3] | T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, ChemCatChem 11 (2019) 1394-1411. |
| [4] | D. Ren, W. Zhang, Y. Ding, R. Shen, Z. Jiang, X. Lu, X. Li, Sol. Rrl (2019), 1900423. |
| [5] | P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Adv. Funct. Mater. 29(2019), 1900093. |
| [6] |
J. Li, Y. Yin, E. Liu, Y. Ma, J. Wan, J. Fan, X. Hu, J. Hazard. Mater. 321(2017) 183-192.
URL PMID |
| [7] | C. Yu, Z. Wu, R. Liu, D.D. Dionysiou, K. Yang, C. Wang, H. Liu, Appl. Catal. B-Environ. 209(2017) 1-11. |
| [8] |
Y. Zhang, L. Li, Q. Han, L. Tang, X. Chen, J. Hu, Z. Li, Y. Zhou, J. Liu, Z. Zou, ChemPhysChem 18 (2017) 3240-3244.
URL PMID |
| [9] |
X. Wu, J.N. Hart, X. Wen, L. Wang, Y. Du, S.X. Dou, Y.H. Ng, R. Amal, J. Scott, ACS Appl. Mater. Interfaces 10 (2018) 9342-9352.
DOI URL PMID |
| [10] | Y. Ma, Y. Jia, Z. Jiao, M. Yang, Y. Qi, Y. Bi, Chem. Commun. 51(2015) 6655-6658. |
| [11] | S. Wang, X. Yang, X. Zhang, X. Ding, Z. Yang, K. Dai, H. Chen, Appl. Surf. Sci. 391(2017) 194-201. |
| [12] | Y. Peng, Y. Zhang, F. Tian, J. Zhang, J. Yu, Crit. Rev. Solid State Mater.Sci. 42(2017) 347-372. |
| [13] | D. Liu, J. Wang, Y. Wang, Y. Zhu, Catal. Sci. Technol. 8(2018) 3278-3285. |
| [14] |
J. Hu, J. Li, J. Cui, W. An, L. Liu, Y. Liang, W. Cui, J. Hazard. Mater. 384(2020), 121399.
URL PMID |
| [15] | Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Mater. Today 21 (2018) 1042-1063. |
| [16] | M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mater. Sci. Technol. 34(2018) 1511-1525. |
| [17] | Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou, W. Ho, Appl. Catal. B-Environ. 255(2019), 117770. |
| [18] | J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B-Environ. 243(2019) 556-565. |
| [19] | H. Ge, F. Xu, B. Cheng, J. Yu, W. Ho, ChemCatChem 11 (2019) 6301-6309. |
| [20] | P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem. Int. Ed. 59(2020) 5218-5225. |
| [21] | J. Luo, Z. Lin, Y. Zhao, S. Jiang, S. Song, Chin. J. Catal. 41(2020) 122-130. |
| [22] | Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, Appl. Surf. Sci. 495(2019), 143555. |
| [23] | X. Li, J. Xiong, X. Gao, J. Ma, Z. Chen, B. Kang, J. Liu, H. Li, Z. Feng, J. Huang, J. Hazard. Mater. 387(2020), 121690. |
| [24] | F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488(2019) 151-160. |
| [25] | Z. Zhu, F. Zhou, S. Zhan, Appl. Surf. Sci. 506(2020) 144934. |
| [26] | S.W. Cao, X.F. Liu, Y.-P. Yuan, Z.Y. Zhang, Y.S. Liao, J. Fang, S.C.J. Loo, T.C. Sum, C. Xue, Appl. Catal. B-Environ. 147(2014) 940-946. |
| [27] |
S. Wang, B.Y. Guan, X.W.D. Lou, J. Am. Chem. Soc. 140(2018) 5037-5040.
URL PMID |
| [28] | S.W. Cao, X.F. Liu, Y.P. Yuan, Z.Y. Zhang, Y.S. Liao, J. Fang, S.C.J. Loo, T.C. Sum, C. Xue, Appl. Catal. B-Environ. 147(2014) 940-946. |
| [29] | L.B. Hoch, T.E. Wood, P.G. O’Brien, K. Liao, L.M. Reyes, C.A. Mims, G.A. Ozin, Adv. Sci. 1(2014), 1400013. |
| [30] |
Z. Li, Z. Wu, S. Zhang, J. Shen, W. Feng, Y. Du, L. Wan, S. Zhang, Dalton Trans. 47(2018) 8110-8120.
URL PMID |
| [31] |
E.M. Köck, M. Kogler, C. Zhuo, L. Schlicker, M.F. Bekheet, A. Doran, A. Gurlo, S. Penner, Phys. Chem. Chem. Phys. 19(2017) 19407-19419.
DOI URL PMID |
| [32] |
D. Pan, S. Ge, X. Zhang, X. Mai, S. Li, Z. Guo, Dalton Trans. 47(2018) 708-715.
URL PMID |
| [33] |
J. Di, J. Xia, M. Ji, H. Li, H. Xu, H. Li, R. Chen, Nanoscale 7 (2015) 11433-11443.
DOI URL PMID |
| [34] | L. Meng, W. Tian, F. Wu, F. Cao, L. Li, J. Mater, Sci. Technol. 35(2019) 1740-1746. |
| [35] | S. Yang, C.Y. Xu, S.P. Hu, W.S. Wang, J. Yu, L. Zhen, Bull. Korean Chem. Soc. 37(2016) 522-528. |
| [36] | S. Wang, X. Ding, N. Yang, G. Zhan, X. Zhan, G. Dong, L. Zhang, H. Chen, Appl. Catal. B-Environ. 265(2020), 118585. |
| [37] | P. Zhu, Y. Chen, M. Duan, Z. Ren, M. Hu, Catal. Sci. Technol. 8(2018) 3818-3832. |
| [38] | X. Wu, Y.H. Ng, X. Wen, H.Y. Chung, R.J. Wong, Y. Du, S.X. Dou, R. Amal, J. Scott, Chem. Eng. J. 353(2018) 636-644. |
| [39] | H. Zhuang, W. Xu, L. Lin, M. Huang, M. Xu, S. Chen, Z. Cai, J. Mater, Sci. Technol. 35(2019) 2312-2318. |
| [40] | Z. Wu, Z. Li, Q. Tian, J. Liu, S. Zhang, K. Xu, J. Shen, S. Zhang, W. Wu, Cryst. Growth Des. 18(2018) 5479-5491. |
| [41] | T.J. Ju, C.H. Wang, S.D. Lin, Catal. Sci. Technol. 9(2019) 2118-2124. |
| [42] | L. Huang, F. Zhang, Y. Li, H. Wang, Q. Wang, C. Wang, H. Xu, H. Li, J. Mater. Sci. 54(2019) 5343-5358. |
| [43] | Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Adv. Mater. 30(2018), 1802396. |
| [44] | Z. Wei, Y. Liu, J. Wang, R. Zong, W. Yao, J. Wang, Y. Zhu, Nanoscale 7 (2015) 13943-13950. |
| [45] | J. Wang, W. Jiang, D. Liu, Z. Wei, Y. Zhu, Appl. Catal. B-Environ. 176-177(2015) 306-314. |
| [46] | Y. Guo, N. Zhang, X. Wang, Q. Qian, S. Zhang, Z. Li, Z. Zou, J. Mater. Chem. A5 (2017) 7571-7577. |
| [47] |
Y.P. Xie, Y. Yang, G. Wang, G. Liu, J. Colloid Interface Sci. 503(2017) 198-204.
URL PMID |
| [48] |
N.T. Khoa, S.W. Kim, D.-H. Yoo, S. Cho, E.J. Kim, S.H. Hahn, ACS Appl. Mater. Interfaces 7 (2015) 3524-3531.
DOI URL PMID |
| [49] | S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, J. Phys. Chem. C116 (2012) 23653-23662. |
| [50] | F. Xu, V. Volkov, Y. Zhu, H. Bai, A. Rea, N.V. Valappil, W. Su, X. Gao, I.L. Kuskovsky, H. Matsui, J. Phys. Chem. C113 (2009) 19419-19423. |
| [51] | R. Wang, J. Shen, W. Zhang, Q. Liu, M. Zhang, H. Zulfiqar, Tang, Ceram. Int. 46(2020) 23-30. |
| [52] | Z. Dai, F. Qin, H. Zhao, J. Ding, Y. Liu, R. Chen, ACS Catal. 6(2016) 3180-3192. |
| [53] | C. Chen, J. Zhou, J. Geng, R. Bao, Z. Wang, J. Xia, H. Li, Appl. Surf. Sci. 503(2020), 144287. |
| [54] | H. Fan, H. Zhou, W. Li, S. Gu, G. Zhou, Appl. Surf. Sci. 504(2020), 144351. |
| [55] | F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41(2020) 9-20. |
| [56] |
L. He, T.E. Wood, B. Wu, Y. Dong, L.B. Hoch, L.M. Reyes, D. Wang, C. Kübel, C. Qian, J. Jia, K. Liao, P.G. O’Brien, A. Sandhel, J.Y.Y. Loh, P. Szymanski, N.P. Kherani, T.C. Sum, C.A. Mims, G.A. Ozin, ACS Nano 10 (2016) 5578-5586.
DOI URL PMID |
| [57] | H. Li, Z. Zheng, M. Liu, H. Jiang, D. Hu, X. Zhang, L. Xia, X. Geng, J. Lu, X. Cheng, Y. Wan, P. Yang, Appl. Surf. Sci. 510(2020), 145468. |
| [58] |
J. Kuang, Z. Xing, J. Yin, Z. Li, Q. Zhu, W. Zhou, J. Colloid Interface Sci. 542(2019) 63-72.
URL PMID |
| [59] | X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, ACS Sustainable Chem. Eng. 4(2016) 4055-4063. |
| [60] | F. Xu, G. Cheng, Y. Wei, R. Chen, Micro Nano Lett. 12(2017) 1020-1023. |
| [61] | Z. Li, X. Meng, Z. Zhang, Appl. Surf. Sci. 483(2019) 572-580. |
| [62] | M. Deng, Y. Huang, Ceram. Int. 45(2019) 23820-23825. |
| [63] | M. Kasinathan, S. Thiripuranthagan, A. Sivakumar, S. Ranganathan, T. Vembuli, S. Kumaravel, E. Erusappan, Mater. Res. Bull. 125(2020), 110782. |
| [64] | A. Phuruangrat, P.-O. Keereesaensuk, K. Karthik, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, J. Inorg, Organomet. Polym. 30(2020) 322-329. |
| [1] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
| [2] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
| [3] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
| [4] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
| [5] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
| [6] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
| [7] | Emese Lantos, László Mérai, Ágota Deák, Juan Gómez-Pérez, Dániel Sebők, Imre Dékány, Zoltán Kónya, László Janovák. Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material [J]. J. Mater. Sci. Technol., 2020, 41(0): 159-167. |
| [8] | Mir Ghasem Hosseini, Pariya Yardani Sefidi, Ahmet Musap Mert, Solen Kinayyigit. Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sulfonic acid doped polyaniline -WO3- MWCNT ternary nanocomposite [J]. J. Mater. Sci. Technol., 2020, 38(0): 7-18. |
| [9] | Yingzhi Chen, Dongjian Jiang, Zhengqi Gong, Qinglin Li, Ranran Shi, Zexi Yang, Ziyi Lei, Jingyuan Li, Lu-Ning Wang. Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation [J]. J. Mater. Sci. Technol., 2020, 38(0): 93-106. |
| [10] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
| [11] | Angga Hermawan, Yusuke Asakura, Miki Inada, Shu Yin. A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature [J]. J. Mater. Sci. Technol., 2020, 51(0): 119-129. |
| [12] | Minghui Xiong, Juntao Yan, Bo Chai, Guozhi Fan, Guangsen Song. Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 179-188. |
| [13] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
| [14] | Dapeng Cao, Jingbo Zhang, Anchen Wang, Xiaohui Yu, Baoxiu Mi. Fabrication of Cr-doped SrTiO3/Ti-doped α-Fe2O3 photoanodes with enhanced photoelectrochemical properties [J]. J. Mater. Sci. Technol., 2020, 56(0): 189-195. |
| [15] | Qiaoqiao Li, Wenli Zhao, Zicheng Zhai, Kaixu Ren, Tingyu Wang, Hao Guan, Haifeng Shi. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading [J]. J. Mater. Sci. Technol., 2020, 56(0): 216-226. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
