J. Mater. Sci. Technol. ›› 2020, Vol. 55: 73-80.DOI: 10.1016/j.jmst.2019.05.032
• Research Article • Previous Articles Next Articles
Jaffer Saddiquea,b,1, Xu Zhanga,1, Tianhao Wua, Heng Sua, Shiqi Liua, Dian Zhanga, Yuefei Zhangb,*(), Haijun Yua,*(
)
Received:
2019-04-30
Accepted:
2019-05-23
Published:
2020-10-15
Online:
2020-10-27
Contact:
Yuefei Zhang,Haijun Yu
Jaffer Saddique, Xu Zhang, Tianhao Wu, Heng Su, Shiqi Liu, Dian Zhang, Yuefei Zhang, Haijun Yu. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes[J]. J. Mater. Sci. Technol., 2020, 55: 73-80.
Fig. 1. (a) A scheme showing the tuning of composite structures by ball milling. (b) XRD examination on the structure transformation of Sn4P3 in super P carbon as a function of rotation speeds. (c, d) Contour plots of 2D XRD patterns showing the evolution of characteristic Sn4P3 and Sn peaks as a function of rotation speed.
Fig. 2. (a, b) Large-scale (a) and high-resolution (b) TEM images of SnPC-200. (c, d) Large-scale (c) and high-resolution (d) TEM images of SnPC-550. (e, f) Large-scale (e) and high-resolution (f) TEM images of SnPC-600. Crystalline domains are marked by red arrows.
Fig. 3. (a) High-resolution TEM image of SnPC-550. Carbon-like layers are marked by blue arrows. (b, c) Enlarged images from marked regions in a showing the co-existence of Sn (b) and Sn3P4 (c) crystallites. (d-g) HAADF image (d) and elemental distribution maps of P (e), Sn (f) and C (g) in the marked region in d.
Fig. 4. Room-temperature electrochemical performance of representative SnPC-r composites synthesized at different rotation speeds. (a) The 1st-cycle CV curves scanned at a rate of 0.01 mV s-1. (b) The representative galvanostatic charge/discharge voltage profiles at a current rate of 0.05 A g-1. (c) Cycle performance acquired at 0.05 A g-1. (d) Rate performance acquired from 0.05 A g-1 to 1 A g-1. (e) Long-cycle performance of SnPC-r composites recorded at 0.05 A g-1 for initial 5 cycles and then at 0.5 A g-1 for remaining cycles. The inset image shows the average capacities at 0.5 A g-1 of composites synthesized at 450, 500, 550 and 600 rpm.
Fig. 5. Ex-situ XRD patterns and schematic reaction routes of SnPC-400 (a, b), SnPC-550 (c, d), and SnPC-600 (e, f) electrodes at different discharge/charge status in the 1st cycle. Carbon was ignored in the reaction routes for simplicity.
[1] |
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935.
DOI URL PMID |
[2] |
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114 (2014) 11636-11682.
URL PMID |
[3] |
X.D. Xiang, K. Zhang, J. Chen, Adv. Mater. 27 (2015) 5343-5364.
DOI URL PMID |
[4] |
J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529-3614.
DOI URL PMID |
[5] | P.K. Nayak, L.T. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 57 (2018) 102-120. |
[6] | H. Su, H.J. Yu, Small Methods 2018 (2018), 1800205. |
[7] | H. Su, J. Saddique, H.J. Yu, Energy Storage Mater. 5 (2016) 116-131. |
[8] | H. Ma, H. Su, K. Amine, X.Y. Liu, S. Jaffer, T.T. Shang, L. Gu, H.J. Yu, Nano Energy 43 (2018) 1-10. |
[9] | Y. Kim, K.H. Ha, S.M. Oh, K.T. Lee, Chem. Eur. J. 20 (2014) 11980-11992. |
[10] | Q.D. Wang, C.L. Zhao, Y.X. Lu, Y.M. Li, Y.H. Zheng, Y.R. Qi, X.H. Rong, L.W. Jiang, X.G. Qi, Y.J. Shao, D. Pan, B.H. Li, Y.S. Hu, L.Q. Chen, Small 13 (2017) 1701835. |
[11] | V.L. Chevrier, G. Ceder, J. Electrochem. Soc. 158 (2011) A1011-A1014. |
[12] | M.S. Balogun, Y. Luo, W.T. Qiu, P. Liu, Y.X. Tong, Carbon 98 (2016) 162-178. |
[13] | E. Irisarri, A. Ponrouch, M.R. Palacin, J. Electrochem. Soc. 162 (2015) A2476-A2482. |
[14] | H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Adv. Energy Mater. 7 (2017) 1602898. |
[15] | M.M. Lao, Y. Zhang, W.B. Luo, Q.Y. Yan, W.P. Sun, S.X. Dou, Adv. Mater. 29 (2017) 1700622. |
[16] | E. Edison, S. Sreejith, C.T. Lim, S. Madhavi, Sustain. Energy Fuels 2 (2018) 2567-2582. |
[17] |
Z. Li, J. Ding, D. Mitlin, Acc. Chem. Res. 48 (2015) 1657-1665.
DOI URL PMID |
[18] | Z.L. Li, H.L. Zhao, J. Mater. Chem. A 6 (2018) 24013-24030. |
[19] | J. Saddique, X. Zhang, T.H. Wu, X. Wang, X.P. Cheng, H. Su, S.Q. Liu, L.Q. Zhang, G.Y. Li, Y.F. Zhang, H.J. Yu, ACS Appl. Energy Mater. 2 (2019) 2223-2229. |
[20] |
A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, J. Am. Chem. Soc. 134 (2012) 20805-20811.
DOI URL PMID |
[21] | X.C. Zhu, M.L. Sun, J.F. Ni, L. Li, Sci. China Chem. 61 (2018) 1494-1502. |
[22] | J.F. Mao, X.L. Fan, C. Luo, C.S. Wang, ACS Appl. Mater. Interface 8 (2016) 7147-7155. |
[23] |
W.J. Li, S.L. Chou, J.Z. Wang, J.H. Kim, H.K. Liu, S.X. Dou, Adv. Mater. 26 (2014) 4037-4042.
DOI URL PMID |
[24] |
J.W. Wang, X.H. Liu, S.X. Mao, J.Y. Huang, Nano Lett. 12 (2012) 5897-5902.
DOI URL PMID |
[25] |
J.F. Qian, Y. Xiong, Y.L. Cao, X.P. Ai, H.X. Yang, Nano Lett. 14 (2014) 1865-1869.
URL PMID |
[26] | J. Zhu, D. Deng, J. Phys. Chem. C 119 (2015) 21323-21328. |
[27] |
Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, N.S. Choi, Y.S. Jung, J.H. Ryu, S.M. Oh, K.T. Lee, Adv. Mater. 26 (2014) 4139-4144.
DOI URL PMID |
[28] | H. Usui, Y. Domi, K. Fujiwara, M. Shimizu, T. Yamamoto, T. Nohira, R. Hagiwara, H. Sakaguchi, ACS Energy Lett. 2 (2017) 1139-1143. |
[29] | L.T. Zheng, R.A. Dunlap, M.N. Obrovac, J. Electrochem. Soc. 163 (2016) A1188-A1191. |
[30] | J.L. Zhang, W.H. Wang, B.H. Li, J. Alloys Compd. 771 (2019) 204-208. |
[31] |
H.S. Shin, K.N. Jung, Y.N. Jo, M.S. Park, H. Kim, J.W. Lee, Sci. Rep. 6 (2016) 26195.
DOI URL PMID |
[32] |
S.L. Liu, H.Z. Zhang, L.Q. Xu, L.B. Ma, X.X. Chen, J. Power Sources 304 (2016) 346-353.
DOI URL |
[33] |
S.L. Liu, H.Z. Zhang, L.Q. Xu, L.B. Ma, X. Hou, Electrochim. Acta 210 (2016) 888-896.
DOI URL |
[34] |
S.L. Liu, H.Z. Zhang, L.Q. Xu, L.B. Ma, J. Cryst. Growth 438 (2016) 31-37.
DOI URL |
[35] |
D.N. Lan, W.H. Wang, L. Shi, Y. Huang, L.B. Hu, Q. Li, J. Mater. Chem. A 5 (2017) 5791-5796.
DOI URL |
[36] | X.L. Fan, T. Gao, C. Luo, F. Wang, J.K. Hu, C.S. Wang, Nano Energy 38 (2017) 350-357. |
[37] | J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier, Y. Yu, Energy Environ. Sci. 8 (2015) 3531-3538. |
[38] | J. Choi, W.S. Kim, K.H. Kim, S.H. Hong, J. Mater. Chem. A 6 (2018) 17437-17443. |
[39] |
L.B. Ma, P.J. Yan, S.K. Wu, G.Y. Zhu, Y.L. Shen, J. Mater. Chem. A 5 (2017) 16994-17000.
DOI URL |
[40] |
Q. Li, Z.Q. Li, Z.W. Zhang, C.X. Li, J.Y. Ma, C.X. Wang, X.L. Ge, S.H. Dong, L.W. Yin, Adv. Energy Mater. 6 (2016) 1600376.
DOI URL |
[41] |
Y.L. Xu, B. Peng, F.M. Mulder, Adv. Energy Mater. 8 (2018) 1701847.
DOI URL |
[1] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[2] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[3] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[4] | Huijie Zhou, Hongbin Zhao, Xuan Zhang, Hongwei Cheng, Xionggang Lu, Qian Xu. Facile one-step synthesis of Cu2O@Cu sub-microspheres composites as anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2018, 34(7): 1085-1090. |
[5] | Yuhui Wang, Jianmei Kang, Yan Peng, Tiansheng Wang, Niels Hansen, Xiaoxu Huang. Laminated Fe-34.5 Mn-0.04C composite with high strength and ductility [J]. J. Mater. Sci. Technol., 2018, 34(10): 1939-1943. |
[6] | Xia Xueke, Xie Jian, Zhang Shichao, Pan Bin, Cao Gaoshao, Zhao Xinbing. Wrinkled Graphene-Reinforced Nickel Sulfide Thin Film as High-Performance Binder-Free Anode for Sodium-Ion Battery [J]. J. Mater. Sci. Technol., 2017, 33(8): 775-780. |
[7] | Jiyan Liang, Cong Geng, Dan Li, Li Cui, Xin Wang. Preparation and Degradation Phenol Characterization of Ti/SnO2-Sb-Mo Electrode Doped with Different Contents of Molybdenum [J]. J. Mater. Sci. Technol., 2015, 31(5): 473-478. |
[8] | Lijun Gong, Yuxi Chen, Hongjiang Yu, Hongbo Liu, Caifu Li, Zhi-Quan Liu. Carbon-coated Li4Ti5O12 Anode Materials Synthesized Using H2TiO3as Ti Source [J]. J. Mater. Sci. Technol., 2014, 30(11): 1092-1095. |
[9] | Y.X. Chen L.H. He P.J. Shang Q.L. Tang Z.Q. Liu H.B. Liu L.P. Zhou. ±Micro-sized and Nano-sized Fe3O4 Particles as Anode Materials for Lithium-ion Batteries [J]. J Mater Sci Technol, 2011, 27(1): 41-45. |
[10] | Jian XIE, Xinbing ZHAO, Gaoshao CAO, Mingjian ZHAO. Electrochemical Li-storage Properties of Nanosized FeSb2 Preparedby Solvothermal Method [J]. J Mater Sci Technol, 2006, 22(01): 31-34. |
[11] | Jian XIE, Xinbing ZHAO, Gaoshao CAO, Mingjian ZHAO, Yaodong ZHONG. Transition Metal on the Electrochemical Performances of Some Intermetallic Anodes for Lithium Ion Batteries [J]. J Mater Sci Technol, 2004, 20(03): 344-346. |
[12] | Yibing XIE, Chunwei YUAN. Visible Light Induced Photocatalysis of Cerium Ion Modified Titania Sol and Nanocrystallites [J]. J Mater Sci Technol, 2004, 20(01): 14-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||